Mister Exam

Other calculators


cos2x/(1+sin2x)

Integral of cos2x/(1+sin2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    cos(2*x)     
 |  ------------ dx
 |  1 + sin(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}\, dx$$
Integral(cos(2*x)/(1 + sin(2*x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 |   cos(2*x)            log(2 + 2*sin(2*x))
 | ------------ dx = C + -------------------
 | 1 + sin(2*x)                   2         
 |                                          
/                                           
$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}\, dx = C + \frac{\log{\left(2 \sin{\left(2 x \right)} + 2 \right)}}{2}$$
The graph
The answer [src]
log(1 + sin(2))
---------------
       2       
$$\frac{\log{\left(\sin{\left(2 \right)} + 1 \right)}}{2}$$
=
=
log(1 + sin(2))
---------------
       2       
$$\frac{\log{\left(\sin{\left(2 \right)} + 1 \right)}}{2}$$
Numerical answer [src]
0.323367667515383
0.323367667515383
The graph
Integral of cos2x/(1+sin2x) dx

    Use the examples entering the upper and lower limits of integration.