Mister Exam

Other calculators

Integral of cos(100x+2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  cos(100*x + 2) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \cos{\left(100 x + 2 \right)}\, dx$$
Integral(cos(100*x + 2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                         sin(100*x + 2)
 | cos(100*x + 2) dx = C + --------------
 |                              100      
/                                        
$$\int \cos{\left(100 x + 2 \right)}\, dx = C + \frac{\sin{\left(100 x + 2 \right)}}{100}$$
The graph
The answer [src]
  sin(2)   sin(102)
- ------ + --------
   100       100   
$$- \frac{\sin{\left(2 \right)}}{100} + \frac{\sin{\left(102 \right)}}{100}$$
=
=
  sin(2)   sin(102)
- ------ + --------
   100       100   
$$- \frac{\sin{\left(2 \right)}}{100} + \frac{\sin{\left(102 \right)}}{100}$$
-sin(2)/100 + sin(102)/100
Numerical answer [src]
0.000855293645327247
0.000855293645327247

    Use the examples entering the upper and lower limits of integration.