Mister Exam

Integral of ch^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      2      
 |  cosh (x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} \cosh^{2}{\left(x \right)}\, dx$$
Integral(cosh(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                           
 |                         2                              2   
 |     2             x*cosh (x)   cosh(x)*sinh(x)   x*sinh (x)
 | cosh (x) dx = C + ---------- + --------------- - ----------
 |                       2               2              2     
/                                                             
$$\int \cosh^{2}{\left(x \right)}\, dx = C - \frac{x \sinh^{2}{\left(x \right)}}{2} + \frac{x \cosh^{2}{\left(x \right)}}{2} + \frac{\sinh{\left(x \right)} \cosh{\left(x \right)}}{2}$$
The graph
The answer [src]
    2          2                     
cosh (1)   sinh (1)   cosh(1)*sinh(1)
-------- - -------- + ---------------
   2          2              2       
$$- \frac{\sinh^{2}{\left(1 \right)}}{2} + \frac{\sinh{\left(1 \right)} \cosh{\left(1 \right)}}{2} + \frac{\cosh^{2}{\left(1 \right)}}{2}$$
=
=
    2          2                     
cosh (1)   sinh (1)   cosh(1)*sinh(1)
-------- - -------- + ---------------
   2          2              2       
$$- \frac{\sinh^{2}{\left(1 \right)}}{2} + \frac{\sinh{\left(1 \right)} \cosh{\left(1 \right)}}{2} + \frac{\cosh^{2}{\left(1 \right)}}{2}$$
cosh(1)^2/2 - sinh(1)^2/2 + cosh(1)*sinh(1)/2
Numerical answer [src]
1.40671510196175
1.40671510196175
The graph
Integral of ch^2x dx

    Use the examples entering the upper and lower limits of integration.