Integral of ch^2x dx
The solution
The answer (Indefinite)
[src]
/
| 2 2
| 2 x*cosh (x) cosh(x)*sinh(x) x*sinh (x)
| cosh (x) dx = C + ---------- + --------------- - ----------
| 2 2 2
/
$$\int \cosh^{2}{\left(x \right)}\, dx = C - \frac{x \sinh^{2}{\left(x \right)}}{2} + \frac{x \cosh^{2}{\left(x \right)}}{2} + \frac{\sinh{\left(x \right)} \cosh{\left(x \right)}}{2}$$
2 2
cosh (1) sinh (1) cosh(1)*sinh(1)
-------- - -------- + ---------------
2 2 2
$$- \frac{\sinh^{2}{\left(1 \right)}}{2} + \frac{\sinh{\left(1 \right)} \cosh{\left(1 \right)}}{2} + \frac{\cosh^{2}{\left(1 \right)}}{2}$$
=
2 2
cosh (1) sinh (1) cosh(1)*sinh(1)
-------- - -------- + ---------------
2 2 2
$$- \frac{\sinh^{2}{\left(1 \right)}}{2} + \frac{\sinh{\left(1 \right)} \cosh{\left(1 \right)}}{2} + \frac{\cosh^{2}{\left(1 \right)}}{2}$$
cosh(1)^2/2 - sinh(1)^2/2 + cosh(1)*sinh(1)/2
Use the examples entering the upper and lower limits of integration.