Mister Exam

Integral of arctgx/2dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  acot(x)   
 |  ------- dx
 |     2      
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\operatorname{acot}{\left(x \right)}}{2}\, dx$$
Integral(acot(x)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                     /     2\            
 | acot(x)          log\1 + x /   x*acot(x)
 | ------- dx = C + ----------- + ---------
 |    2                  4            2    
 |                                         
/                                          
$$\int \frac{\operatorname{acot}{\left(x \right)}}{2}\, dx = C + \frac{x \operatorname{acot}{\left(x \right)}}{2} + \frac{\log{\left(x^{2} + 1 \right)}}{4}$$
The graph
The answer [src]
log(2)   pi
------ + --
  4      8 
$$\frac{\log{\left(2 \right)}}{4} + \frac{\pi}{8}$$
=
=
log(2)   pi
------ + --
  4      8 
$$\frac{\log{\left(2 \right)}}{4} + \frac{\pi}{8}$$
log(2)/4 + pi/8
Numerical answer [src]
0.56598587683871
0.56598587683871

    Use the examples entering the upper and lower limits of integration.