Integral of arctgx/2dx dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2acot(x)dx=2∫acot(x)dx
-
Don't know the steps in finding this integral.
But the integral is
xacot(x)+2log(x2+1)
So, the result is: 2xacot(x)+4log(x2+1)
-
Add the constant of integration:
2xacot(x)+4log(x2+1)+constant
The answer is:
2xacot(x)+4log(x2+1)+constant
The answer (Indefinite)
[src]
/
| / 2\
| acot(x) log\1 + x / x*acot(x)
| ------- dx = C + ----------- + ---------
| 2 4 2
|
/
∫2acot(x)dx=C+2xacot(x)+4log(x2+1)
The graph
log(2) pi
------ + --
4 8
4log(2)+8π
=
log(2) pi
------ + --
4 8
4log(2)+8π
Use the examples entering the upper and lower limits of integration.