Mister Exam

Integral of arctg(x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  atan(x + 2) dx
 |                
/                 
0                 
01atan(x+2)dx\int\limits_{0}^{1} \operatorname{atan}{\left(x + 2 \right)}\, dx
Integral(atan(x + 2), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /           2\                      
 |                      log\1 + (x + 2) /                      
 | atan(x + 2) dx = C - ----------------- + (x + 2)*atan(x + 2)
 |                              2                              
/                                                              
atan(x+2)dx=C+(x+2)atan(x+2)log((x+2)2+1)2\int \operatorname{atan}{\left(x + 2 \right)}\, dx = C + \left(x + 2\right) \operatorname{atan}{\left(x + 2 \right)} - \frac{\log{\left(\left(x + 2\right)^{2} + 1 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
log(5)                           log(10)
------ - 2*atan(2) + 3*atan(3) - -------
  2                                 2   
2atan(2)log(10)2+log(5)2+3atan(3)- 2 \operatorname{atan}{\left(2 \right)} - \frac{\log{\left(10 \right)}}{2} + \frac{\log{\left(5 \right)}}{2} + 3 \operatorname{atan}{\left(3 \right)}
=
=
log(5)                           log(10)
------ - 2*atan(2) + 3*atan(3) - -------
  2                                 2   
2atan(2)log(10)2+log(5)2+3atan(3)- 2 \operatorname{atan}{\left(2 \right)} - \frac{\log{\left(10 \right)}}{2} + \frac{\log{\left(5 \right)}}{2} + 3 \operatorname{atan}{\left(3 \right)}
log(5)/2 - 2*atan(2) + 3*atan(3) - log(10)/2
Numerical answer [src]
1.18626629132661
1.18626629132661

    Use the examples entering the upper and lower limits of integration.