Mister Exam

Other calculators

Integral of (arctg(2x))/(pi(1+4x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |    atan(2*x)     
 |  ------------- dx
 |     /       2\   
 |  pi*\1 + 4*x /   
 |                  
/                   
0                   
$$\int\limits_{0}^{\infty} \frac{\operatorname{atan}{\left(2 x \right)}}{\pi \left(4 x^{2} + 1\right)}\, dx$$
Integral(atan(2*x)/((pi*(1 + 4*x^2))), (x, 0, oo))
The answer (Indefinite) [src]
  /                                 
 |                            2     
 |   atan(2*x)            atan (2*x)
 | ------------- dx = C + ----------
 |    /       2\             4*pi   
 | pi*\1 + 4*x /                    
 |                                  
/                                   
$$\int \frac{\operatorname{atan}{\left(2 x \right)}}{\pi \left(4 x^{2} + 1\right)}\, dx = C + \frac{\operatorname{atan}^{2}{\left(2 x \right)}}{4 \pi}$$
The graph
The answer [src]
pi
--
16
$$\frac{\pi}{16}$$
=
=
pi
--
16
$$\frac{\pi}{16}$$
pi/16

    Use the examples entering the upper and lower limits of integration.