Mister Exam

Other calculators


sqrt(1+1/(x^2))

Integral of sqrt(1+1/(x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       ________   
 |      /     1     
 |     /  1 + --  dx
 |    /        2    
 |  \/        x     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{1 + \frac{1}{x^{2}}}\, dx$$
Integral(sqrt(1 + 1/(x^2)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                 
 |                                                                  
 |      ________                                                    
 |     /     1                 /1\         x                1       
 |    /  1 + --  dx = C - asinh|-| + ------------- + ---------------
 |   /        2                \x/        ________          ________
 | \/        x                           /     1           /     1  
 |                                      /  1 + --    x*   /  1 + -- 
/                                      /        2        /        2 
                                     \/        x       \/        x  
$$\int \sqrt{1 + \frac{1}{x^{2}}}\, dx = C + \frac{x}{\sqrt{1 + \frac{1}{x^{2}}}} - \operatorname{asinh}{\left(\frac{1}{x} \right)} + \frac{1}{x \sqrt{1 + \frac{1}{x^{2}}}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
44.3164332899064
44.3164332899064
The graph
Integral of sqrt(1+1/(x^2)) dx

    Use the examples entering the upper and lower limits of integration.