Integral of arctg^6x-1 dx
The solution
Detail solution
-
Integrate term-by-term:
-
Don't know the steps in finding this integral.
But the integral is
-
The integral of a constant is the constant times the variable of integration:
The result is:
-
Add the constant of integration:
The answer is:
The answer (Indefinite)
[src]
/ /
| |
| / 6 \ | 6
| \atan (x) - 1/ dx = C - x + | atan (x) dx
| |
/ /
$$\int \left(\operatorname{atan}^{6}{\left(x \right)} - 1\right)\, dx = C - x + \int \operatorname{atan}^{6}{\left(x \right)}\, dx$$
1
/
|
| / 2 \ / 2 \
| (1 + atan(x))*(-1 + atan(x))*\1 + atan (x) - atan(x)/*\1 + atan (x) + atan(x)/ dx
|
/
0
$$\int\limits_{0}^{1} \left(\operatorname{atan}{\left(x \right)} - 1\right) \left(\operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} - \operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} + \operatorname{atan}{\left(x \right)} + 1\right)\, dx$$
=
1
/
|
| / 2 \ / 2 \
| (1 + atan(x))*(-1 + atan(x))*\1 + atan (x) - atan(x)/*\1 + atan (x) + atan(x)/ dx
|
/
0
$$\int\limits_{0}^{1} \left(\operatorname{atan}{\left(x \right)} - 1\right) \left(\operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} - \operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} + \operatorname{atan}{\left(x \right)} + 1\right)\, dx$$
Integral((1 + atan(x))*(-1 + atan(x))*(1 + atan(x)^2 - atan(x))*(1 + atan(x)^2 + atan(x)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.