Mister Exam

Other calculators

Integral of arctg^6x-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /    6       \   
 |  \atan (x) - 1/ dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \left(\operatorname{atan}^{6}{\left(x \right)} - 1\right)\, dx$$
Integral(atan(x)^6 - 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              /           
 |                              |            
 | /    6       \               |     6      
 | \atan (x) - 1/ dx = C - x +  | atan (x) dx
 |                              |            
/                              /             
$$\int \left(\operatorname{atan}^{6}{\left(x \right)} - 1\right)\, dx = C - x + \int \operatorname{atan}^{6}{\left(x \right)}\, dx$$
The answer [src]
  1                                                                                  
  /                                                                                  
 |                                                                                   
 |                               /        2             \ /        2             \   
 |  (1 + atan(x))*(-1 + atan(x))*\1 + atan (x) - atan(x)/*\1 + atan (x) + atan(x)/ dx
 |                                                                                   
/                                                                                    
0                                                                                    
$$\int\limits_{0}^{1} \left(\operatorname{atan}{\left(x \right)} - 1\right) \left(\operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} - \operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} + \operatorname{atan}{\left(x \right)} + 1\right)\, dx$$
=
=
  1                                                                                  
  /                                                                                  
 |                                                                                   
 |                               /        2             \ /        2             \   
 |  (1 + atan(x))*(-1 + atan(x))*\1 + atan (x) - atan(x)/*\1 + atan (x) + atan(x)/ dx
 |                                                                                   
/                                                                                    
0                                                                                    
$$\int\limits_{0}^{1} \left(\operatorname{atan}{\left(x \right)} - 1\right) \left(\operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} - \operatorname{atan}{\left(x \right)} + 1\right) \left(\operatorname{atan}^{2}{\left(x \right)} + \operatorname{atan}{\left(x \right)} + 1\right)\, dx$$
Integral((1 + atan(x))*(-1 + atan(x))*(1 + atan(x)^2 - atan(x))*(1 + atan(x)^2 + atan(x)), (x, 0, 1))
Numerical answer [src]
-0.955043511201883
-0.955043511201883

    Use the examples entering the upper and lower limits of integration.