Mister Exam

Other calculators


arctg((3x)/4)

Integral of arctg((3x)/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4/3            
  /             
 |              
 |      /3*x\   
 |  atan|---| dx
 |      \ 4 /   
 |              
/               
0               
$$\int\limits_{0}^{\frac{4}{3}} \operatorname{atan}{\left(\frac{3 x}{4} \right)}\, dx$$
Integral(atan(3*x/4), (x, 0, 4/3))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of a constant is the constant times the variable of integration:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of a constant is the constant times the variable of integration:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                           /       2\              
  /                        |    9*x |              
 |                    2*log|1 + ----|              
 |     /3*x\               \     16 /         /3*x\
 | atan|---| dx = C - --------------- + x*atan|---|
 |     \ 4 /                 3                \ 4 /
 |                                                 
/                                                  
$${{4\,\left({{3\,\arctan \left({{3\,x}\over{4}}\right)\,x}\over{4}}- {{\log \left({{9\,x^2}\over{16}}+1\right)}\over{2}}\right)}\over{3}}$$
The graph
The answer [src]
  2*log(32)   pi   2*log(16)
- --------- + -- + ---------
      3       3        3    
$$-{{2\,\log 2-\pi}\over{3}}$$
=
=
  2*log(32)   pi   2*log(16)
- --------- + -- + ---------
      3       3        3    
$$- \frac{2 \log{\left(32 \right)}}{3} + \frac{\pi}{3} + \frac{2 \log{\left(16 \right)}}{3}$$
Numerical answer [src]
0.585099430823301
0.585099430823301
The graph
Integral of arctg((3x)/4) dx

    Use the examples entering the upper and lower limits of integration.