Mister Exam

Other calculators


arctg((3x)/4)

Integral of arctg((3x)/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4/3            
  /             
 |              
 |      /3*x\   
 |  atan|---| dx
 |      \ 4 /   
 |              
/               
0               
043atan(3x4)dx\int\limits_{0}^{\frac{4}{3}} \operatorname{atan}{\left(\frac{3 x}{4} \right)}\, dx
Integral(atan(3*x/4), (x, 0, 4/3))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=3x4u = \frac{3 x}{4}.

      Then let du=3dx4du = \frac{3 dx}{4} and substitute 4du3\frac{4 du}{3}:

      16atan(u)9du\int \frac{16 \operatorname{atan}{\left(u \right)}}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        4atan(u)3du=4atan(u)du3\int \frac{4 \operatorname{atan}{\left(u \right)}}{3}\, du = \frac{4 \int \operatorname{atan}{\left(u \right)}\, du}{3}

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=atan(u)u{\left(u \right)} = \operatorname{atan}{\left(u \right)} and let dv(u)=1\operatorname{dv}{\left(u \right)} = 1.

          Then du(u)=1u2+1\operatorname{du}{\left(u \right)} = \frac{1}{u^{2} + 1}.

          To find v(u)v{\left(u \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          uu2+1du=2uu2+1du2\int \frac{u}{u^{2} + 1}\, du = \frac{\int \frac{2 u}{u^{2} + 1}\, du}{2}

          1. Let u=u2+1u = u^{2} + 1.

            Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

            12udu\int \frac{1}{2 u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u2+1)\log{\left(u^{2} + 1 \right)}

          So, the result is: log(u2+1)2\frac{\log{\left(u^{2} + 1 \right)}}{2}

        So, the result is: 4uatan(u)32log(u2+1)3\frac{4 u \operatorname{atan}{\left(u \right)}}{3} - \frac{2 \log{\left(u^{2} + 1 \right)}}{3}

      Now substitute uu back in:

      xatan(3x4)2log(9x216+1)3x \operatorname{atan}{\left(\frac{3 x}{4} \right)} - \frac{2 \log{\left(\frac{9 x^{2}}{16} + 1 \right)}}{3}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=atan(3x4)u{\left(x \right)} = \operatorname{atan}{\left(\frac{3 x}{4} \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=34(9x216+1)\operatorname{du}{\left(x \right)} = \frac{3}{4 \cdot \left(\frac{9 x^{2}}{16} + 1\right)}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      3x4(9x216+1)dx=3x9x216+1dx4\int \frac{3 x}{4 \cdot \left(\frac{9 x^{2}}{16} + 1\right)}\, dx = \frac{3 \int \frac{x}{\frac{9 x^{2}}{16} + 1}\, dx}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        x9x216+1dx=89x8(9x216+1)dx9\int \frac{x}{\frac{9 x^{2}}{16} + 1}\, dx = \frac{8 \int \frac{9 x}{8 \cdot \left(\frac{9 x^{2}}{16} + 1\right)}\, dx}{9}

        1. Let u=9x216+1u = \frac{9 x^{2}}{16} + 1.

          Then let du=9xdx8du = \frac{9 x dx}{8} and substitute 8du9\frac{8 du}{9}:

          89udu\int \frac{8}{9 u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(9x216+1)\log{\left(\frac{9 x^{2}}{16} + 1 \right)}

        So, the result is: 8log(9x216+1)9\frac{8 \log{\left(\frac{9 x^{2}}{16} + 1 \right)}}{9}

      So, the result is: 2log(9x216+1)3\frac{2 \log{\left(\frac{9 x^{2}}{16} + 1 \right)}}{3}

  2. Now simplify:

    xatan(3x4)2log(9x216+1)3x \operatorname{atan}{\left(\frac{3 x}{4} \right)} - \frac{2 \log{\left(\frac{9 x^{2}}{16} + 1 \right)}}{3}

  3. Add the constant of integration:

    xatan(3x4)2log(9x216+1)3+constantx \operatorname{atan}{\left(\frac{3 x}{4} \right)} - \frac{2 \log{\left(\frac{9 x^{2}}{16} + 1 \right)}}{3}+ \mathrm{constant}


The answer is:

xatan(3x4)2log(9x216+1)3+constantx \operatorname{atan}{\left(\frac{3 x}{4} \right)} - \frac{2 \log{\left(\frac{9 x^{2}}{16} + 1 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
                           /       2\              
  /                        |    9*x |              
 |                    2*log|1 + ----|              
 |     /3*x\               \     16 /         /3*x\
 | atan|---| dx = C - --------------- + x*atan|---|
 |     \ 4 /                 3                \ 4 /
 |                                                 
/                                                  
4(3arctan(3x4)x4log(9x216+1)2)3{{4\,\left({{3\,\arctan \left({{3\,x}\over{4}}\right)\,x}\over{4}}- {{\log \left({{9\,x^2}\over{16}}+1\right)}\over{2}}\right)}\over{3}}
The graph
0.00.10.20.30.40.50.60.70.80.91.01.11.21.32.5-2.5
The answer [src]
  2*log(32)   pi   2*log(16)
- --------- + -- + ---------
      3       3        3    
2log2π3-{{2\,\log 2-\pi}\over{3}}
=
=
  2*log(32)   pi   2*log(16)
- --------- + -- + ---------
      3       3        3    
2log(32)3+π3+2log(16)3- \frac{2 \log{\left(32 \right)}}{3} + \frac{\pi}{3} + \frac{2 \log{\left(16 \right)}}{3}
Numerical answer [src]
0.585099430823301
0.585099430823301
The graph
Integral of arctg((3x)/4) dx

    Use the examples entering the upper and lower limits of integration.