Integral of arctg((3x)/4) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=43x.
Then let du=43dx and substitute 34du:
∫916atan(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫34atan(u)du=34∫atan(u)du
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=atan(u) and let dv(u)=1.
Then du(u)=u2+11.
To find v(u):
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2+1udu=2∫u2+12udu
-
Let u=u2+1.
Then let du=2udu and substitute 2du:
∫2u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u2+1)
So, the result is: 2log(u2+1)
So, the result is: 34uatan(u)−32log(u2+1)
Now substitute u back in:
xatan(43x)−32log(169x2+1)
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=atan(43x) and let dv(x)=1.
Then du(x)=4⋅(169x2+1)3.
To find v(x):
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫4⋅(169x2+1)3xdx=43∫169x2+1xdx
-
The integral of a constant times a function is the constant times the integral of the function:
∫169x2+1xdx=98∫8⋅(169x2+1)9xdx
-
Let u=169x2+1.
Then let du=89xdx and substitute 98du:
∫9u8du
-
The integral of u1 is log(u).
Now substitute u back in:
log(169x2+1)
So, the result is: 98log(169x2+1)
So, the result is: 32log(169x2+1)
-
Now simplify:
xatan(43x)−32log(169x2+1)
-
Add the constant of integration:
xatan(43x)−32log(169x2+1)+constant
The answer is:
xatan(43x)−32log(169x2+1)+constant
The answer (Indefinite)
[src]
/ 2\
/ | 9*x |
| 2*log|1 + ----|
| /3*x\ \ 16 / /3*x\
| atan|---| dx = C - --------------- + x*atan|---|
| \ 4 / 3 \ 4 /
|
/
34(43arctan(43x)x−2log(169x2+1))
The graph
2*log(32) pi 2*log(16)
- --------- + -- + ---------
3 3 3
−32log2−π
=
2*log(32) pi 2*log(16)
- --------- + -- + ---------
3 3 3
−32log(32)+3π+32log(16)
Use the examples entering the upper and lower limits of integration.