Integral of arcctg(x+1) dx
The solution
The answer (Indefinite)
[src]
/ / 2\
| log\1 + (x + 1) /
| acot(x + 1) dx = C + ----------------- + (x + 1)*acot(x + 1)
| 2
/
2log((x+1)2+1)+(x+1)arccot(x+1)
The graph
log(5) log(2) pi
------ + 2*acot(2) - ------ - --
2 2 4
2log5−2arctan2+2arctan(21)−42log2−π
=
log(5) log(2) pi
------ + 2*acot(2) - ------ - --
2 2 4
−4π−2log(2)+2log(5)+2acot(2)
Use the examples entering the upper and lower limits of integration.