Mister Exam

Integral of arcctg(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  acot(x + 1) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \operatorname{acot}{\left(x + 1 \right)}\, dx$$
Integral(acot(x + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /           2\                      
 |                      log\1 + (x + 1) /                      
 | acot(x + 1) dx = C + ----------------- + (x + 1)*acot(x + 1)
 |                              2                              
/                                                              
$${{\log \left(\left(x+1\right)^2+1\right)}\over{2}}+\left(x+1\right) \,{\rm arccot}\; \left(x+1\right)$$
The graph
The answer [src]
log(5)               log(2)   pi
------ + 2*acot(2) - ------ - --
  2                    2      4 
$${{\log 5-2\,\arctan 2+2\,\arctan \left({{1}\over{2}}\right)}\over{2 }}-{{2\,\log 2-\pi}\over{4}}$$
=
=
log(5)               log(2)   pi
------ + 2*acot(2) - ------ - --
  2                    2      4 
$$- \frac{\pi}{4} - \frac{\log{\left(2 \right)}}{2} + \frac{\log{\left(5 \right)}}{2} + 2 \operatorname{acot}{\left(2 \right)}$$
Numerical answer [src]
0.600042420541241
0.600042420541241
The graph
Integral of arcctg(x+1) dx

    Use the examples entering the upper and lower limits of integration.