Mister Exam

Other calculators

Integral of arcctg(2x)/(pi^2(4x^2+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                  
  /                  
 |                   
 |    acot(2*x)      
 |  -------------- dx
 |    2 /   2    \   
 |  pi *\4*x  + 1/   
 |                   
/                    
1/2                  
$$\int\limits_{\frac{1}{2}}^{\infty} \frac{\operatorname{acot}{\left(2 x \right)}}{\pi^{2} \left(4 x^{2} + 1\right)}\, dx$$
Integral(acot(2*x)/((pi^2*(4*x^2 + 1))), (x, 1/2, oo))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #3

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                             2     
 |   acot(2*x)             acot (2*x)
 | -------------- dx = C - ----------
 |   2 /   2    \                2   
 | pi *\4*x  + 1/            4*pi    
 |                                   
/                                    
$$\int \frac{\operatorname{acot}{\left(2 x \right)}}{\pi^{2} \left(4 x^{2} + 1\right)}\, dx = C - \frac{\operatorname{acot}^{2}{\left(2 x \right)}}{4 \pi^{2}}$$
The answer [src]
1/64
$$\frac{1}{64}$$
=
=
1/64
$$\frac{1}{64}$$
1/64

    Use the examples entering the upper and lower limits of integration.