Mister Exam

Integral of arcctg4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  acot(4*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \operatorname{acot}{\left(4 x \right)}\, dx$$
Integral(acot(4*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /        2\              
 |                    log\1 + 16*x /              
 | acot(4*x) dx = C + -------------- + x*acot(4*x)
 |                          8                     
/                                                 
$$\int \operatorname{acot}{\left(4 x \right)}\, dx = C + x \operatorname{acot}{\left(4 x \right)} + \frac{\log{\left(16 x^{2} + 1 \right)}}{8}$$
The graph
The answer [src]
log(17)          
------- + acot(4)
   8             
$$\operatorname{acot}{\left(4 \right)} + \frac{\log{\left(17 \right)}}{8}$$
=
=
log(17)          
------- + acot(4)
   8             
$$\operatorname{acot}{\left(4 \right)} + \frac{\log{\left(17 \right)}}{8}$$
log(17)/8 + acot(4)
Numerical answer [src]
0.599130331133891
0.599130331133891

    Use the examples entering the upper and lower limits of integration.