Integral of arcctg4x dx
The solution
The answer (Indefinite)
[src]
/ / 2\
| log\1 + 16*x /
| acot(4*x) dx = C + -------------- + x*acot(4*x)
| 8
/
$$\int \operatorname{acot}{\left(4 x \right)}\, dx = C + x \operatorname{acot}{\left(4 x \right)} + \frac{\log{\left(16 x^{2} + 1 \right)}}{8}$$
log(17)
------- + acot(4)
8
$$\operatorname{acot}{\left(4 \right)} + \frac{\log{\left(17 \right)}}{8}$$
=
log(17)
------- + acot(4)
8
$$\operatorname{acot}{\left(4 \right)} + \frac{\log{\left(17 \right)}}{8}$$
Use the examples entering the upper and lower limits of integration.