Mister Exam

Integral of arctan(t) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  t           
  /           
 |            
 |  atan(t) dt
 |            
/             
0             
$$\int\limits_{0}^{t} \operatorname{atan}{\left(t \right)}\, dt$$
Integral(atan(t), (t, 0, t))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                    /     2\            
 |                  log\1 + t /            
 | atan(t) dt = C - ----------- + t*atan(t)
 |                       2                 
/                                          
$$\int \operatorname{atan}{\left(t \right)}\, dt = C + t \operatorname{atan}{\left(t \right)} - \frac{\log{\left(t^{2} + 1 \right)}}{2}$$
The answer [src]
     /     2\            
  log\1 + t /            
- ----------- + t*atan(t)
       2                 
$$t \operatorname{atan}{\left(t \right)} - \frac{\log{\left(t^{2} + 1 \right)}}{2}$$
=
=
     /     2\            
  log\1 + t /            
- ----------- + t*atan(t)
       2                 
$$t \operatorname{atan}{\left(t \right)} - \frac{\log{\left(t^{2} + 1 \right)}}{2}$$
-log(1 + t^2)/2 + t*atan(t)

    Use the examples entering the upper and lower limits of integration.