t / | | atan(t) dt | / 0
Integral(atan(t), (t, 0, t))
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ / 2\ | log\1 + t / | atan(t) dt = C - ----------- + t*atan(t) | 2 /
/ 2\
log\1 + t /
- ----------- + t*atan(t)
2
=
/ 2\
log\1 + t /
- ----------- + t*atan(t)
2
-log(1 + t^2)/2 + t*atan(t)
Use the examples entering the upper and lower limits of integration.