Mister Exam

Other calculators

Integral of arcsin(x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3/2          
  /           
 |            
 |      /x\   
 |  asin|-| dx
 |      \3/   
 |            
/             
1             
$$\int\limits_{1}^{\frac{3}{2}} \operatorname{asin}{\left(\frac{x}{3} \right)}\, dx$$
Integral(asin(x/3), (x, 1, 3/2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of a constant is the constant times the variable of integration:

          Now evaluate the sub-integral.

        2. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of a constant is the constant times the variable of integration:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        ________            
 |                        /      2             
 |     /x\               /      x           /x\
 | asin|-| dx = C + 3*  /   1 - --  + x*asin|-|
 |     \3/            \/        9           \3/
 |                                             
/                                              
$$\int \operatorname{asin}{\left(\frac{x}{3} \right)}\, dx = C + x \operatorname{asin}{\left(\frac{x}{3} \right)} + 3 \sqrt{1 - \frac{x^{2}}{9}}$$
The graph
The answer [src]
                                ___
                 ___   pi   3*\/ 3 
-asin(1/3) - 2*\/ 2  + -- + -------
                       4       2   
$$- 2 \sqrt{2} - \operatorname{asin}{\left(\frac{1}{3} \right)} + \frac{\pi}{4} + \frac{3 \sqrt{3}}{2}$$
=
=
                                ___
                 ___   pi   3*\/ 3 
-asin(1/3) - 2*\/ 2  + -- + -------
                       4       2   
$$- 2 \sqrt{2} - \operatorname{asin}{\left(\frac{1}{3} \right)} + \frac{\pi}{4} + \frac{3 \sqrt{3}}{2}$$
-asin(1/3) - 2*sqrt(2) + pi/4 + 3*sqrt(3)/2
Numerical answer [src]
0.215210340550452
0.215210340550452

    Use the examples entering the upper and lower limits of integration.