Integral of absolute(sinx)/x dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| |sin(x)| | |sin(x)|
| -------- dx = C + | -------- dx
| x | x
| |
/ /
$$\int {{{{\it Abs}\left(\sin x\right)}\over{x}}}{\;dx}$$
oo
/
|
| |sin(x)|
| -------- dx
| x
|
/
0
$$\int\limits_{0}^{\infty} \frac{\left|{\sin{\left(x \right)}}\right|}{x}\, dx$$
=
oo
/
|
| |sin(x)|
| -------- dx
| x
|
/
0
$$\int\limits_{0}^{\infty} \frac{\left|{\sin{\left(x \right)}}\right|}{x}\, dx$$
Use the examples entering the upper and lower limits of integration.