Mister Exam

Other calculators

Integral of absolute(sinx)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |  |sin(x)|   
 |  -------- dx
 |     x       
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{\left|{\sin{\left(x \right)}}\right|}{x}\, dx$$
The answer (Indefinite) [src]
  /                    /           
 |                    |            
 | |sin(x)|           | |sin(x)|   
 | -------- dx = C +  | -------- dx
 |    x               |    x       
 |                    |            
/                    /             
$$\int {{{{\it Abs}\left(\sin x\right)}\over{x}}}{\;dx}$$
The answer [src]
 oo            
  /            
 |             
 |  |sin(x)|   
 |  -------- dx
 |     x       
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{\left|{\sin{\left(x \right)}}\right|}{x}\, dx$$
=
=
 oo            
  /            
 |             
 |  |sin(x)|   
 |  -------- dx
 |     x       
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{\left|{\sin{\left(x \right)}}\right|}{x}\, dx$$

    Use the examples entering the upper and lower limits of integration.