Mister Exam

Derivative of a^x*e^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x  x
a *E 
$$e^{x} a^{x}$$
a^x*E^x
Detail solution
  1. Apply the product rule:

    ; to find :

    ; to find :

    1. The derivative of is itself.

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
 x  x    x  x       
a *e  + a *e *log(a)
$$a^{x} e^{x} \log{\left(a \right)} + a^{x} e^{x}$$
The second derivative [src]
 x /       2              \  x
a *\1 + log (a) + 2*log(a)/*e 
$$a^{x} \left(\log{\left(a \right)}^{2} + 2 \log{\left(a \right)} + 1\right) e^{x}$$
The third derivative [src]
 x /       3           2              \  x
a *\1 + log (a) + 3*log (a) + 3*log(a)/*e 
$$a^{x} \left(\log{\left(a \right)}^{3} + 3 \log{\left(a \right)}^{2} + 3 \log{\left(a \right)} + 1\right) e^{x}$$