Mister Exam

Other calculators

Integral of 8x^4-5x^2+8x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /   4      2      \   
 |  \8*x  - 5*x  + 8*x/ dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(8 x + \left(8 x^{4} - 5 x^{2}\right)\right)\, dx$$
Integral(8*x^4 - 5*x^2 + 8*x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                        3      5
 | /   4      2      \             2   5*x    8*x 
 | \8*x  - 5*x  + 8*x/ dx = C + 4*x  - ---- + ----
 |                                      3      5  
/                                                 
$$\int \left(8 x + \left(8 x^{4} - 5 x^{2}\right)\right)\, dx = C + \frac{8 x^{5}}{5} - \frac{5 x^{3}}{3} + 4 x^{2}$$
The graph
The answer [src]
59
--
15
$$\frac{59}{15}$$
=
=
59
--
15
$$\frac{59}{15}$$
59/15
Numerical answer [src]
3.93333333333333
3.93333333333333

    Use the examples entering the upper and lower limits of integration.