Mister Exam

Other calculators

Integral of 7x-2x³÷1+7x⁴ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /         3       \   
 |  |      2*x       4|   
 |  |7*x - ---- + 7*x | dx
 |  \       1         /   
 |                        
/                         
0                         
01(7x4+(7x2x31))dx\int\limits_{0}^{1} \left(7 x^{4} + \left(7 x - \frac{2 x^{3}}{1}\right)\right)\, dx
Integral(7*x - 2*x^3/1 + 7*x^4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      7x4dx=7x4dx\int 7 x^{4}\, dx = 7 \int x^{4}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      So, the result is: 7x55\frac{7 x^{5}}{5}

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        7xdx=7xdx\int 7 x\, dx = 7 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 7x22\frac{7 x^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x31)dx=2x3dx\int \left(- \frac{2 x^{3}}{1}\right)\, dx = - \int 2 x^{3}\, dx

        1. The integral of a constant times a function is the constant times the integral of the function:

          2x3dx=2x3dx\int 2 x^{3}\, dx = 2 \int x^{3}\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

          So, the result is: x42\frac{x^{4}}{2}

        So, the result is: x42- \frac{x^{4}}{2}

      The result is: x42+7x22- \frac{x^{4}}{2} + \frac{7 x^{2}}{2}

    The result is: 7x55x42+7x22\frac{7 x^{5}}{5} - \frac{x^{4}}{2} + \frac{7 x^{2}}{2}

  2. Now simplify:

    x2(14x35x2+35)10\frac{x^{2} \left(14 x^{3} - 5 x^{2} + 35\right)}{10}

  3. Add the constant of integration:

    x2(14x35x2+35)10+constant\frac{x^{2} \left(14 x^{3} - 5 x^{2} + 35\right)}{10}+ \mathrm{constant}


The answer is:

x2(14x35x2+35)10+constant\frac{x^{2} \left(14 x^{3} - 5 x^{2} + 35\right)}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                                              
 | /         3       \           4      2      5
 | |      2*x       4|          x    7*x    7*x 
 | |7*x - ---- + 7*x | dx = C - -- + ---- + ----
 | \       1         /          2     2      5  
 |                                              
/                                               
(7x4+(7x2x31))dx=C+7x55x42+7x22\int \left(7 x^{4} + \left(7 x - \frac{2 x^{3}}{1}\right)\right)\, dx = C + \frac{7 x^{5}}{5} - \frac{x^{4}}{2} + \frac{7 x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
22/5
225\frac{22}{5}
=
=
22/5
225\frac{22}{5}
22/5
Numerical answer [src]
4.4
4.4

    Use the examples entering the upper and lower limits of integration.