Mister Exam

Other calculators

Integral of 7x/2-x^2/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |  /       2\   
 |  |7*x   x |   
 |  |--- - --| dx
 |  \ 2    2 /   
 |               
/                
0                
$$\int\limits_{0}^{2} \left(- \frac{x^{2}}{2} + \frac{7 x}{2}\right)\, dx$$
Integral((7*x)/2 - x^2/2, (x, 0, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             
 |                              
 | /       2\           3      2
 | |7*x   x |          x    7*x 
 | |--- - --| dx = C - -- + ----
 | \ 2    2 /          6     4  
 |                              
/                               
$$\int \left(- \frac{x^{2}}{2} + \frac{7 x}{2}\right)\, dx = C - \frac{x^{3}}{6} + \frac{7 x^{2}}{4}$$
The graph
The answer [src]
17/3
$$\frac{17}{3}$$
=
=
17/3
$$\frac{17}{3}$$
17/3
Numerical answer [src]
5.66666666666667
5.66666666666667

    Use the examples entering the upper and lower limits of integration.