Mister Exam

Integral of 7cos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 2               
  /              
 |               
 |  7*cos(3*x) dx
 |               
/                
pi               
--               
3                
$$\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} 7 \cos{\left(3 x \right)}\, dx$$
Integral(7*cos(3*x), (x, pi/3, pi/2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                     7*sin(3*x)
 | 7*cos(3*x) dx = C + ----------
 |                         3     
/                                
$$\int 7 \cos{\left(3 x \right)}\, dx = C + \frac{7 \sin{\left(3 x \right)}}{3}$$
The graph
The answer [src]
-7/3
$$- \frac{7}{3}$$
=
=
-7/3
$$- \frac{7}{3}$$
Numerical answer [src]
-2.33333333333333
-2.33333333333333
The graph
Integral of 7cos3x dx

    Use the examples entering the upper and lower limits of integration.