Mister Exam

Other calculators

Integral of (6x-5)sin(-2x-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  (6*x - 5)*sin(-2*x - 5) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(6 x - 5\right) \sin{\left(- 2 x - 5 \right)}\, dx$$
Integral((6*x - 5)*sin(-2*x - 5), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                   
 |                                  5*cos(5 + 2*x)   3*sin(5 + 2*x)                   
 | (6*x - 5)*sin(-2*x - 5) dx = C - -------------- - -------------- + 3*x*cos(5 + 2*x)
 |                                        2                2                          
/                                                                                     
$$\int \left(6 x - 5\right) \sin{\left(- 2 x - 5 \right)}\, dx = C + 3 x \cos{\left(2 x + 5 \right)} - \frac{3 \sin{\left(2 x + 5 \right)}}{2} - \frac{5 \cos{\left(2 x + 5 \right)}}{2}$$
The graph
The answer [src]
cos(7)   3*sin(7)   3*sin(5)   5*cos(5)
------ - -------- + -------- + --------
  2         2          2          2    
$$\frac{3 \sin{\left(5 \right)}}{2} - \frac{3 \sin{\left(7 \right)}}{2} + \frac{\cos{\left(7 \right)}}{2} + \frac{5 \cos{\left(5 \right)}}{2}$$
=
=
cos(7)   3*sin(7)   3*sin(5)   5*cos(5)
------ - -------- + -------- + --------
  2         2          2          2    
$$\frac{3 \sin{\left(5 \right)}}{2} - \frac{3 \sin{\left(7 \right)}}{2} + \frac{\cos{\left(7 \right)}}{2} + \frac{5 \cos{\left(5 \right)}}{2}$$
cos(7)/2 - 3*sin(7)/2 + 3*sin(5)/2 + 5*cos(5)/2
Numerical answer [src]
-1.33775971924317
-1.33775971924317

    Use the examples entering the upper and lower limits of integration.