1 / | | (6*x - 5)*sin(-2*x - 5) dx | / 0
Integral((6*x - 5)*sin(-2*x - 5), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | 5*cos(5 + 2*x) 3*sin(5 + 2*x) | (6*x - 5)*sin(-2*x - 5) dx = C - -------------- - -------------- + 3*x*cos(5 + 2*x) | 2 2 /
cos(7) 3*sin(7) 3*sin(5) 5*cos(5) ------ - -------- + -------- + -------- 2 2 2 2
=
cos(7) 3*sin(7) 3*sin(5) 5*cos(5) ------ - -------- + -------- + -------- 2 2 2 2
cos(7)/2 - 3*sin(7)/2 + 3*sin(5)/2 + 5*cos(5)/2
Use the examples entering the upper and lower limits of integration.