Mister Exam

Other calculators

Integral of 5x^2-4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |  /   2    \   
 |  \5*x  - 4/ dx
 |               
/                
0                
$$\int\limits_{0}^{2} \left(5 x^{2} - 4\right)\, dx$$
Integral(5*x^2 - 4, (x, 0, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                              3
 | /   2    \                5*x 
 | \5*x  - 4/ dx = C - 4*x + ----
 |                            3  
/                                
$$\int \left(5 x^{2} - 4\right)\, dx = C + \frac{5 x^{3}}{3} - 4 x$$
The graph
The answer [src]
16/3
$$\frac{16}{3}$$
=
=
16/3
$$\frac{16}{3}$$
16/3
Numerical answer [src]
5.33333333333333
5.33333333333333

    Use the examples entering the upper and lower limits of integration.