Mister Exam

Other calculators

Integral of 5x^3-2x^2-3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                     
  /                     
 |                      
 |  /   3      2    \   
 |  \5*x  - 2*x  - 3/ dx
 |                      
/                       
-1                      
$$\int\limits_{-1}^{3} \left(\left(5 x^{3} - 2 x^{2}\right) - 3\right)\, dx$$
Integral(5*x^3 - 2*x^2 - 3, (x, -1, 3))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                     3      4
 | /   3      2    \                2*x    5*x 
 | \5*x  - 2*x  - 3/ dx = C - 3*x - ---- + ----
 |                                   3      4  
/                                              
$$\int \left(\left(5 x^{3} - 2 x^{2}\right) - 3\right)\, dx = C + \frac{5 x^{4}}{4} - \frac{2 x^{3}}{3} - 3 x$$
The graph
The answer [src]
208/3
$$\frac{208}{3}$$
=
=
208/3
$$\frac{208}{3}$$
208/3
Numerical answer [src]
69.3333333333333
69.3333333333333

    Use the examples entering the upper and lower limits of integration.