Mister Exam

Other calculators


1/(x+x^(1/3))

Integral of 1/(x+x^(1/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |      3 ___   
 |  x + \/ x    
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1}{\sqrt[3]{x} + x}\, dx$$
Integral(1/(x + x^(1/3)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                         /     2/3\
 |     1              3*log\1 + x   /
 | --------- dx = C + ---------------
 |     3 ___                 2       
 | x + \/ x                          
 |                                   
/                                    
$$\int \frac{1}{\sqrt[3]{x} + x}\, dx = C + \frac{3 \log{\left(x^{\frac{2}{3}} + 1 \right)}}{2}$$
The graph
The answer [src]
3*log(2)
--------
   2    
$$\frac{3 \log{\left(2 \right)}}{2}$$
=
=
3*log(2)
--------
   2    
$$\frac{3 \log{\left(2 \right)}}{2}$$
3*log(2)/2
Numerical answer [src]
1.03972077083961
1.03972077083961
The graph
Integral of 1/(x+x^(1/3)) dx

    Use the examples entering the upper and lower limits of integration.