Mister Exam

Other calculators


1/(x+x^(1/3))

Integral of 1/(x+x^(1/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |      3 ___   
 |  x + \/ x    
 |              
/               
0               
011x3+xdx\int\limits_{0}^{1} \frac{1}{\sqrt[3]{x} + x}\, dx
Integral(1/(x + x^(1/3)), (x, 0, 1))
Detail solution
  1. Let u=x3u = \sqrt[3]{x}.

    Then let du=dx3x23du = \frac{dx}{3 x^{\frac{2}{3}}} and substitute 3du3 du:

    3uu2+1du\int \frac{3 u}{u^{2} + 1}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      uu2+1du=3uu2+1du\int \frac{u}{u^{2} + 1}\, du = 3 \int \frac{u}{u^{2} + 1}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        uu2+1du=2uu2+1du2\int \frac{u}{u^{2} + 1}\, du = \frac{\int \frac{2 u}{u^{2} + 1}\, du}{2}

        1. Let u=u2+1u = u^{2} + 1.

          Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

          12udu\int \frac{1}{2 u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(u2+1)\log{\left(u^{2} + 1 \right)}

        So, the result is: log(u2+1)2\frac{\log{\left(u^{2} + 1 \right)}}{2}

      So, the result is: 3log(u2+1)2\frac{3 \log{\left(u^{2} + 1 \right)}}{2}

    Now substitute uu back in:

    3log(x23+1)2\frac{3 \log{\left(x^{\frac{2}{3}} + 1 \right)}}{2}

  2. Add the constant of integration:

    3log(x23+1)2+constant\frac{3 \log{\left(x^{\frac{2}{3}} + 1 \right)}}{2}+ \mathrm{constant}


The answer is:

3log(x23+1)2+constant\frac{3 \log{\left(x^{\frac{2}{3}} + 1 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                         /     2/3\
 |     1              3*log\1 + x   /
 | --------- dx = C + ---------------
 |     3 ___                 2       
 | x + \/ x                          
 |                                   
/                                    
1x3+xdx=C+3log(x23+1)2\int \frac{1}{\sqrt[3]{x} + x}\, dx = C + \frac{3 \log{\left(x^{\frac{2}{3}} + 1 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90025
The answer [src]
3*log(2)
--------
   2    
3log(2)2\frac{3 \log{\left(2 \right)}}{2}
=
=
3*log(2)
--------
   2    
3log(2)2\frac{3 \log{\left(2 \right)}}{2}
3*log(2)/2
Numerical answer [src]
1.03972077083961
1.03972077083961
The graph
Integral of 1/(x+x^(1/3)) dx

    Use the examples entering the upper and lower limits of integration.