Integral of 5x-12 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫5xdx=5∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 25x2
-
The integral of a constant is the constant times the variable of integration:
∫(−12)dx=−12x
The result is: 25x2−12x
-
Now simplify:
2x(5x−24)
-
Add the constant of integration:
2x(5x−24)+constant
The answer is:
2x(5x−24)+constant
The answer (Indefinite)
[src]
/ 2
| 5*x
| (5*x - 12) dx = C - 12*x + ----
| 2
/
∫(5x−12)dx=C+25x2−12x
The graph
Use the examples entering the upper and lower limits of integration.