Mister Exam

Other calculators

Integral of (4x^3-3x^2+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                     
  /                     
 |                      
 |  /   3      2    \   
 |  \4*x  - 3*x  + 5/ dx
 |                      
/                       
l                       
l3((4x33x2)+5)dx\int\limits_{l}^{3} \left(\left(4 x^{3} - 3 x^{2}\right) + 5\right)\, dx
Integral(4*x^3 - 3*x^2 + 5, (x, l, 3))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        4x3dx=4x3dx\int 4 x^{3}\, dx = 4 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: x4x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3x2)dx=3x2dx\int \left(- 3 x^{2}\right)\, dx = - 3 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: x3- x^{3}

      The result is: x4x3x^{4} - x^{3}

    1. The integral of a constant is the constant times the variable of integration:

      5dx=5x\int 5\, dx = 5 x

    The result is: x4x3+5xx^{4} - x^{3} + 5 x

  2. Now simplify:

    x(x3x2+5)x \left(x^{3} - x^{2} + 5\right)

  3. Add the constant of integration:

    x(x3x2+5)+constantx \left(x^{3} - x^{2} + 5\right)+ \mathrm{constant}


The answer is:

x(x3x2+5)+constantx \left(x^{3} - x^{2} + 5\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        
 |                                         
 | /   3      2    \           4    3      
 | \4*x  - 3*x  + 5/ dx = C + x  - x  + 5*x
 |                                         
/                                          
((4x33x2)+5)dx=C+x4x3+5x\int \left(\left(4 x^{3} - 3 x^{2}\right) + 5\right)\, dx = C + x^{4} - x^{3} + 5 x
The answer [src]
      3    4      
69 + l  - l  - 5*l
l4+l35l+69- l^{4} + l^{3} - 5 l + 69
=
=
      3    4      
69 + l  - l  - 5*l
l4+l35l+69- l^{4} + l^{3} - 5 l + 69
69 + l^3 - l^4 - 5*l

    Use the examples entering the upper and lower limits of integration.