Mister Exam

Other calculators

Integral of ((4x+2)/(2x-1))dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2           
  /           
 |            
 |  4*x + 2   
 |  ------- dx
 |  2*x - 1   
 |            
/             
1             
124x+22x1dx\int\limits_{1}^{2} \frac{4 x + 2}{2 x - 1}\, dx
Integral((4*x + 2)/(2*x - 1), (x, 1, 2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute dudu:

      u+22u4du\int \frac{u + 2}{2 u - 4}\, du

      1. Rewrite the integrand:

        u+22u4=12+2u2\frac{u + 2}{2 u - 4} = \frac{1}{2} + \frac{2}{u - 2}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          2u2du=21u2du\int \frac{2}{u - 2}\, du = 2 \int \frac{1}{u - 2}\, du

          1. Let u=u2u = u - 2.

            Then let du=dudu = du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u2)\log{\left(u - 2 \right)}

          So, the result is: 2log(u2)2 \log{\left(u - 2 \right)}

        The result is: u2+2log(u2)\frac{u}{2} + 2 \log{\left(u - 2 \right)}

      Now substitute uu back in:

      2x+2log(4x2)2 x + 2 \log{\left(4 x - 2 \right)}

    Method #2

    1. Rewrite the integrand:

      4x+22x1=2+42x1\frac{4 x + 2}{2 x - 1} = 2 + \frac{4}{2 x - 1}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        2dx=2x\int 2\, dx = 2 x

      1. The integral of a constant times a function is the constant times the integral of the function:

        42x1dx=412x1dx\int \frac{4}{2 x - 1}\, dx = 4 \int \frac{1}{2 x - 1}\, dx

        1. Let u=2x1u = 2 x - 1.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          12udu\int \frac{1}{2 u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu2\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{2}

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)2\frac{\log{\left(u \right)}}{2}

          Now substitute uu back in:

          log(2x1)2\frac{\log{\left(2 x - 1 \right)}}{2}

        So, the result is: 2log(2x1)2 \log{\left(2 x - 1 \right)}

      The result is: 2x+2log(2x1)2 x + 2 \log{\left(2 x - 1 \right)}

    Method #3

    1. Rewrite the integrand:

      4x+22x1=4x2x1+22x1\frac{4 x + 2}{2 x - 1} = \frac{4 x}{2 x - 1} + \frac{2}{2 x - 1}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        4x2x1dx=4x2x1dx\int \frac{4 x}{2 x - 1}\, dx = 4 \int \frac{x}{2 x - 1}\, dx

        1. Rewrite the integrand:

          x2x1=12+12(2x1)\frac{x}{2 x - 1} = \frac{1}{2} + \frac{1}{2 \left(2 x - 1\right)}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          1. The integral of a constant times a function is the constant times the integral of the function:

            12(2x1)dx=12x1dx2\int \frac{1}{2 \left(2 x - 1\right)}\, dx = \frac{\int \frac{1}{2 x - 1}\, dx}{2}

            1. Let u=2x1u = 2 x - 1.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              12udu\int \frac{1}{2 u}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                1udu=1udu2\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{2}

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                So, the result is: log(u)2\frac{\log{\left(u \right)}}{2}

              Now substitute uu back in:

              log(2x1)2\frac{\log{\left(2 x - 1 \right)}}{2}

            So, the result is: log(2x1)4\frac{\log{\left(2 x - 1 \right)}}{4}

          The result is: x2+log(2x1)4\frac{x}{2} + \frac{\log{\left(2 x - 1 \right)}}{4}

        So, the result is: 2x+log(2x1)2 x + \log{\left(2 x - 1 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        22x1dx=212x1dx\int \frac{2}{2 x - 1}\, dx = 2 \int \frac{1}{2 x - 1}\, dx

        1. Let u=2x1u = 2 x - 1.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          12udu\int \frac{1}{2 u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu2\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{2}

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)2\frac{\log{\left(u \right)}}{2}

          Now substitute uu back in:

          log(2x1)2\frac{\log{\left(2 x - 1 \right)}}{2}

        So, the result is: log(2x1)\log{\left(2 x - 1 \right)}

      The result is: 2x+log(2x1)+log(2x1)2 x + \log{\left(2 x - 1 \right)} + \log{\left(2 x - 1 \right)}

  2. Add the constant of integration:

    2x+2log(4x2)+constant2 x + 2 \log{\left(4 x - 2 \right)}+ \mathrm{constant}


The answer is:

2x+2log(4x2)+constant2 x + 2 \log{\left(4 x - 2 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      
 |                                       
 | 4*x + 2                               
 | ------- dx = C + 2*x + 2*log(-2 + 4*x)
 | 2*x - 1                               
 |                                       
/                                        
4x+22x1dx=C+2x+2log(4x2)\int \frac{4 x + 2}{2 x - 1}\, dx = C + 2 x + 2 \log{\left(4 x - 2 \right)}
The graph
1.002.001.101.201.301.401.501.601.701.801.90010
The answer [src]
2 + 2*log(3)
2+2log(3)2 + 2 \log{\left(3 \right)}
=
=
2 + 2*log(3)
2+2log(3)2 + 2 \log{\left(3 \right)}
2 + 2*log(3)
Numerical answer [src]
4.19722457733622
4.19722457733622

    Use the examples entering the upper and lower limits of integration.