Mister Exam

Integral of 4x-12 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  (4*x - 12) dx
 |               
/                
0                
01(4x12)dx\int\limits_{0}^{1} \left(4 x - 12\right)\, dx
Integral(4*x - 12, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      4xdx=4xdx\int 4 x\, dx = 4 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 2x22 x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      (12)dx=12x\int \left(-12\right)\, dx = - 12 x

    The result is: 2x212x2 x^{2} - 12 x

  2. Now simplify:

    2x(x6)2 x \left(x - 6\right)

  3. Add the constant of integration:

    2x(x6)+constant2 x \left(x - 6\right)+ \mathrm{constant}


The answer is:

2x(x6)+constant2 x \left(x - 6\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                               2
 | (4*x - 12) dx = C - 12*x + 2*x 
 |                                
/                                 
(4x12)dx=C+2x212x\int \left(4 x - 12\right)\, dx = C + 2 x^{2} - 12 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2010
The answer [src]
-10
10-10
=
=
-10
10-10
-10
Numerical answer [src]
-10.0
-10.0

    Use the examples entering the upper and lower limits of integration.