Integral of 4xcosxsinx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=4x and let dv(x)=sin(x)cos(x).
Then du(x)=4.
To find v(x):
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(2x)dx=2∫sin(2x)dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
Method #2
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)cos(x)dx=2∫sin(x)cos(x)dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
Method #2
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sin2(x)
So, the result is: −cos2(x)
So, the result is: −4cos(2x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(2x))dx=−∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −2sin(2x)
-
Add the constant of integration:
−xcos(2x)+2sin(2x)+constant
The answer is:
−xcos(2x)+2sin(2x)+constant
The answer (Indefinite)
[src]
/
| sin(2*x)
| 4*x*cos(x)*sin(x) dx = C + -------- - x*cos(2*x)
| 2
/
∫4xcos(x)sin(x)dx=C−xcos(2x)+2sin(2x)
The graph
2 2
sin (1) - cos (1) + cos(1)*sin(1)
−cos2(1)+sin(1)cos(1)+sin2(1)
=
2 2
sin (1) - cos (1) + cos(1)*sin(1)
−cos2(1)+sin(1)cos(1)+sin2(1)
sin(1)^2 - cos(1)^2 + cos(1)*sin(1)
Use the examples entering the upper and lower limits of integration.