Mister Exam

Other calculators

Integral of 4tan^5(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi             
 --             
 4              
  /             
 |              
 |       5      
 |  4*tan (x) dx
 |              
/               
0               
0π44tan5(x)dx\int\limits_{0}^{\frac{\pi}{4}} 4 \tan^{5}{\left(x \right)}\, dx
Integral(4*tan(x)^5, (x, 0, pi/4))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    4tan5(x)dx=4tan5(x)dx\int 4 \tan^{5}{\left(x \right)}\, dx = 4 \int \tan^{5}{\left(x \right)}\, dx

    1. Rewrite the integrand:

      tan5(x)=(sec2(x)1)2tan(x)\tan^{5}{\left(x \right)} = \left(\sec^{2}{\left(x \right)} - 1\right)^{2} \tan{\left(x \right)}

    2. There are multiple ways to do this integral.

      Method #1

      1. Let u=sec2(x)u = \sec^{2}{\left(x \right)}.

        Then let du=2tan(x)sec2(x)dxdu = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} dx and substitute du2\frac{du}{2}:

        u22u+12udu\int \frac{u^{2} - 2 u + 1}{2 u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u22u+1udu=u22u+1udu2\int \frac{u^{2} - 2 u + 1}{u}\, du = \frac{\int \frac{u^{2} - 2 u + 1}{u}\, du}{2}

          1. Rewrite the integrand:

            u22u+1u=u2+1u\frac{u^{2} - 2 u + 1}{u} = u - 2 + \frac{1}{u}

          2. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            1. The integral of a constant is the constant times the variable of integration:

              (2)du=2u\int \left(-2\right)\, du = - 2 u

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            The result is: u222u+log(u)\frac{u^{2}}{2} - 2 u + \log{\left(u \right)}

          So, the result is: u24u+log(u)2\frac{u^{2}}{4} - u + \frac{\log{\left(u \right)}}{2}

        Now substitute uu back in:

        log(sec2(x))2+sec4(x)4sec2(x)\frac{\log{\left(\sec^{2}{\left(x \right)} \right)}}{2} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}

      Method #2

      1. Rewrite the integrand:

        (sec2(x)1)2tan(x)=tan(x)sec4(x)2tan(x)sec2(x)+tan(x)\left(\sec^{2}{\left(x \right)} - 1\right)^{2} \tan{\left(x \right)} = \tan{\left(x \right)} \sec^{4}{\left(x \right)} - 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} + \tan{\left(x \right)}

      2. Integrate term-by-term:

        1. Let u=sec(x)u = \sec{\left(x \right)}.

          Then let du=tan(x)sec(x)dxdu = \tan{\left(x \right)} \sec{\left(x \right)} dx and substitute dudu:

          u3du\int u^{3}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

          Now substitute uu back in:

          sec4(x)4\frac{\sec^{4}{\left(x \right)}}{4}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2tan(x)sec2(x))dx=2tan(x)sec2(x)dx\int \left(- 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\, dx = - 2 \int \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx

          1. Let u=sec(x)u = \sec{\left(x \right)}.

            Then let du=tan(x)sec(x)dxdu = \tan{\left(x \right)} \sec{\left(x \right)} dx and substitute dudu:

            udu\int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            Now substitute uu back in:

            sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

          So, the result is: sec2(x)- \sec^{2}{\left(x \right)}

        1. Rewrite the integrand:

          tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

        2. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (1u)du\int \left(- \frac{1}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)- \log{\left(u \right)}

          Now substitute uu back in:

          log(cos(x))- \log{\left(\cos{\left(x \right)} \right)}

        The result is: log(cos(x))+sec4(x)4sec2(x)- \log{\left(\cos{\left(x \right)} \right)} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}

      Method #3

      1. Rewrite the integrand:

        (sec2(x)1)2tan(x)=tan(x)sec4(x)2tan(x)sec2(x)+tan(x)\left(\sec^{2}{\left(x \right)} - 1\right)^{2} \tan{\left(x \right)} = \tan{\left(x \right)} \sec^{4}{\left(x \right)} - 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} + \tan{\left(x \right)}

      2. Integrate term-by-term:

        1. Let u=sec(x)u = \sec{\left(x \right)}.

          Then let du=tan(x)sec(x)dxdu = \tan{\left(x \right)} \sec{\left(x \right)} dx and substitute dudu:

          u3du\int u^{3}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

          Now substitute uu back in:

          sec4(x)4\frac{\sec^{4}{\left(x \right)}}{4}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2tan(x)sec2(x))dx=2tan(x)sec2(x)dx\int \left(- 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\, dx = - 2 \int \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx

          1. Let u=sec(x)u = \sec{\left(x \right)}.

            Then let du=tan(x)sec(x)dxdu = \tan{\left(x \right)} \sec{\left(x \right)} dx and substitute dudu:

            udu\int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            Now substitute uu back in:

            sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

          So, the result is: sec2(x)- \sec^{2}{\left(x \right)}

        1. Rewrite the integrand:

          tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

        2. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (1u)du\int \left(- \frac{1}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)- \log{\left(u \right)}

          Now substitute uu back in:

          log(cos(x))- \log{\left(\cos{\left(x \right)} \right)}

        The result is: log(cos(x))+sec4(x)4sec2(x)- \log{\left(\cos{\left(x \right)} \right)} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}

    So, the result is: 2log(sec2(x))+sec4(x)4sec2(x)2 \log{\left(\sec^{2}{\left(x \right)} \right)} + \sec^{4}{\left(x \right)} - 4 \sec^{2}{\left(x \right)}

  2. Add the constant of integration:

    2log(sec2(x))+sec4(x)4sec2(x)+constant2 \log{\left(\sec^{2}{\left(x \right)} \right)} + \sec^{4}{\left(x \right)} - 4 \sec^{2}{\left(x \right)}+ \mathrm{constant}


The answer is:

2log(sec2(x))+sec4(x)4sec2(x)+constant2 \log{\left(\sec^{2}{\left(x \right)} \right)} + \sec^{4}{\left(x \right)} - 4 \sec^{2}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                                        
 |      5                4           2           /   2   \
 | 4*tan (x) dx = C + sec (x) - 4*sec (x) + 2*log\sec (x)/
 |                                                        
/                                                         
4tan5(x)dx=C+2log(sec2(x))+sec4(x)4sec2(x)\int 4 \tan^{5}{\left(x \right)}\, dx = C + 2 \log{\left(\sec^{2}{\left(x \right)} \right)} + \sec^{4}{\left(x \right)} - 4 \sec^{2}{\left(x \right)}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.75-1010
The answer [src]
          /  ___\
          |\/ 2 |
-1 - 4*log|-----|
          \  2  /
14log(22)-1 - 4 \log{\left(\frac{\sqrt{2}}{2} \right)}
=
=
          /  ___\
          |\/ 2 |
-1 - 4*log|-----|
          \  2  /
14log(22)-1 - 4 \log{\left(\frac{\sqrt{2}}{2} \right)}
-1 - 4*log(sqrt(2)/2)
Numerical answer [src]
0.386294361119891
0.386294361119891

    Use the examples entering the upper and lower limits of integration.