Integral of 4tan^5(x) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫4tan5(x)dx=4∫tan5(x)dx
-
Rewrite the integrand:
tan5(x)=(sec2(x)−1)2tan(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec2(x).
Then let du=2tan(x)sec2(x)dx and substitute 2du:
∫2uu2−2u+1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uu2−2u+1du=2∫uu2−2u+1du
-
Rewrite the integrand:
uu2−2u+1=u−2+u1
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
-
The integral of a constant is the constant times the variable of integration:
∫(−2)du=−2u
-
The integral of u1 is log(u).
The result is: 2u2−2u+log(u)
So, the result is: 4u2−u+2log(u)
Now substitute u back in:
2log(sec2(x))+4sec4(x)−sec2(x)
Method #2
-
Rewrite the integrand:
(sec2(x)−1)2tan(x)=tan(x)sec4(x)−2tan(x)sec2(x)+tan(x)
-
Integrate term-by-term:
-
Let u=sec(x).
Then let du=tan(x)sec(x)dx and substitute du:
∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
Now substitute u back in:
4sec4(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2tan(x)sec2(x))dx=−2∫tan(x)sec2(x)dx
-
Let u=sec(x).
Then let du=tan(x)sec(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sec2(x)
So, the result is: −sec2(x)
-
Rewrite the integrand:
tan(x)=cos(x)sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x))
The result is: −log(cos(x))+4sec4(x)−sec2(x)
Method #3
-
Rewrite the integrand:
(sec2(x)−1)2tan(x)=tan(x)sec4(x)−2tan(x)sec2(x)+tan(x)
-
Integrate term-by-term:
-
Let u=sec(x).
Then let du=tan(x)sec(x)dx and substitute du:
∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
Now substitute u back in:
4sec4(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2tan(x)sec2(x))dx=−2∫tan(x)sec2(x)dx
-
Let u=sec(x).
Then let du=tan(x)sec(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sec2(x)
So, the result is: −sec2(x)
-
Rewrite the integrand:
tan(x)=cos(x)sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x))
The result is: −log(cos(x))+4sec4(x)−sec2(x)
So, the result is: 2log(sec2(x))+sec4(x)−4sec2(x)
-
Add the constant of integration:
2log(sec2(x))+sec4(x)−4sec2(x)+constant
The answer is:
2log(sec2(x))+sec4(x)−4sec2(x)+constant
The answer (Indefinite)
[src]
/
|
| 5 4 2 / 2 \
| 4*tan (x) dx = C + sec (x) - 4*sec (x) + 2*log\sec (x)/
|
/
∫4tan5(x)dx=C+2log(sec2(x))+sec4(x)−4sec2(x)
The graph
/ ___\
|\/ 2 |
-1 - 4*log|-----|
\ 2 /
−1−4log(22)
=
/ ___\
|\/ 2 |
-1 - 4*log|-----|
\ 2 /
−1−4log(22)
Use the examples entering the upper and lower limits of integration.