Mister Exam

Other calculators

Integral of (4sqrt(x)+2/(sqrt(x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  9                     
  /                     
 |                      
 |  /    ___     2  \   
 |  |4*\/ x  + -----| dx
 |  |            ___|   
 |  \          \/ x /   
 |                      
/                       
4                       
$$\int\limits_{4}^{9} \left(4 \sqrt{x} + \frac{2}{\sqrt{x}}\right)\, dx$$
Integral(4*sqrt(x) + 2/sqrt(x), (x, 4, 9))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of a constant is the constant times the variable of integration:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                         3/2
 | /    ___     2  \              ___   8*x   
 | |4*\/ x  + -----| dx = C + 4*\/ x  + ------
 | |            ___|                      3   
 | \          \/ x /                          
 |                                            
/                                             
$$\int \left(4 \sqrt{x} + \frac{2}{\sqrt{x}}\right)\, dx = C + \frac{8 x^{\frac{3}{2}}}{3} + 4 \sqrt{x}$$
The graph
The answer [src]
164/3
$$\frac{164}{3}$$
=
=
164/3
$$\frac{164}{3}$$
164/3
Numerical answer [src]
54.6666666666667
54.6666666666667

    Use the examples entering the upper and lower limits of integration.