Mister Exam

Integral of 4sin(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
  /              
 |               
 |  4*sin(3*x) dx
 |               
/                
0                
$$\int\limits_{0}^{\pi} 4 \sin{\left(3 x \right)}\, dx$$
Integral(4*sin(3*x), (x, 0, pi))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                     4*cos(3*x)
 | 4*sin(3*x) dx = C - ----------
 |                         3     
/                                
$$\int 4 \sin{\left(3 x \right)}\, dx = C - \frac{4 \cos{\left(3 x \right)}}{3}$$
The graph
The answer [src]
8/3
$$\frac{8}{3}$$
=
=
8/3
$$\frac{8}{3}$$
8/3
Numerical answer [src]
2.66666666666667
2.66666666666667

    Use the examples entering the upper and lower limits of integration.