1 / | | ____________ | / 2 | (3*y - 1)*\/ 3*y - 2*y dy | / 0
Integral((3*y - 1)*sqrt(3*y^2 - 2*y), (y, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 | ____________ / 2 \ | / 2 \3*y - 2*y/ | (3*y - 1)*\/ 3*y - 2*y dy = C + --------------- | 3 /
(0.332995638440809 - 0.000202028623140647j)
(0.332995638440809 - 0.000202028623140647j)
Use the examples entering the upper and lower limits of integration.