Mister Exam

Other calculators

Integral of 3x^2-4x+5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  7                    
  /                    
 |                     
 |  /   2          \   
 |  \3*x  - 4*x + 5/ dx
 |                     
/                      
2                      
27((3x24x)+5)dx\int\limits_{2}^{7} \left(\left(3 x^{2} - 4 x\right) + 5\right)\, dx
Integral(3*x^2 - 4*x + 5, (x, 2, 7))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: x3x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (4x)dx=4xdx\int \left(- 4 x\right)\, dx = - 4 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 2x2- 2 x^{2}

      The result is: x32x2x^{3} - 2 x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      5dx=5x\int 5\, dx = 5 x

    The result is: x32x2+5xx^{3} - 2 x^{2} + 5 x

  2. Now simplify:

    x(x22x+5)x \left(x^{2} - 2 x + 5\right)

  3. Add the constant of integration:

    x(x22x+5)+constantx \left(x^{2} - 2 x + 5\right)+ \mathrm{constant}


The answer is:

x(x22x+5)+constantx \left(x^{2} - 2 x + 5\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /   2          \           3      2      
 | \3*x  - 4*x + 5/ dx = C + x  - 2*x  + 5*x
 |                                          
/                                           
((3x24x)+5)dx=C+x32x2+5x\int \left(\left(3 x^{2} - 4 x\right) + 5\right)\, dx = C + x^{3} - 2 x^{2} + 5 x
The graph
2.07.02.53.03.54.04.55.05.56.06.50500
The answer [src]
270
270270
=
=
270
270270
270
Numerical answer [src]
270.0
270.0

    Use the examples entering the upper and lower limits of integration.