x / | | 3*x*sin(x) dx | / x - 2
Integral((3*x)*sin(x), (x, x/2, x))
Use integration by parts:
Let and let .
Then .
To find :
The integral of sine is negative cosine:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 3*x*sin(x) dx = C + 3*sin(x) - 3*x*cos(x) | /
/x\ 3*x*cos|-| /x\ \2/ - 3*sin|-| + 3*sin(x) - 3*x*cos(x) + ---------- \2/ 2
=
/x\ 3*x*cos|-| /x\ \2/ - 3*sin|-| + 3*sin(x) - 3*x*cos(x) + ---------- \2/ 2
-3*sin(x/2) + 3*sin(x) - 3*x*cos(x) + 3*x*cos(x/2)/2
Use the examples entering the upper and lower limits of integration.