Mister Exam

Integral of 3xsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x              
  /              
 |               
 |  3*x*sin(x) dx
 |               
/                
x                
-                
2                
$$\int\limits_{\frac{x}{2}}^{x} 3 x \sin{\left(x \right)}\, dx$$
Integral((3*x)*sin(x), (x, x/2, x))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of cosine is sine:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | 3*x*sin(x) dx = C + 3*sin(x) - 3*x*cos(x)
 |                                          
/                                           
$$\int 3 x \sin{\left(x \right)}\, dx = C - 3 x \cos{\left(x \right)} + 3 \sin{\left(x \right)}$$
The answer [src]
                                            /x\
                                     3*x*cos|-|
       /x\                                  \2/
- 3*sin|-| + 3*sin(x) - 3*x*cos(x) + ----------
       \2/                               2     
$$\frac{3 x \cos{\left(\frac{x}{2} \right)}}{2} - 3 x \cos{\left(x \right)} - 3 \sin{\left(\frac{x}{2} \right)} + 3 \sin{\left(x \right)}$$
=
=
                                            /x\
                                     3*x*cos|-|
       /x\                                  \2/
- 3*sin|-| + 3*sin(x) - 3*x*cos(x) + ----------
       \2/                               2     
$$\frac{3 x \cos{\left(\frac{x}{2} \right)}}{2} - 3 x \cos{\left(x \right)} - 3 \sin{\left(\frac{x}{2} \right)} + 3 \sin{\left(x \right)}$$
-3*sin(x/2) + 3*sin(x) - 3*x*cos(x) + 3*x*cos(x/2)/2

    Use the examples entering the upper and lower limits of integration.