Mister Exam

Other calculators

Integral of e^(-3x)sin(x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |   -3*x    /x\   
 |  E    *sin|-| dx
 |           \3/   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} e^{- 3 x} \sin{\left(\frac{x}{3} \right)}\, dx$$
Integral(E^(-3*x)*sin(x/3), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /               
 |                        |                
 |  -3*x    /x\           |  -3*x    /x\   
 | E    *sin|-| dx = C +  | e    *sin|-| dx
 |          \3/           |          \3/   
 |                        |                
/                        /                 
$$\int e^{- 3 x} \sin{\left(\frac{x}{3} \right)}\, dx = C + \int e^{- 3 x} \sin{\left(\frac{x}{3} \right)}\, dx$$
The graph
The answer [src]
         -3                        -3
3    27*e  *sin(1/3)   3*cos(1/3)*e  
-- - --------------- - --------------
82          82               82      
$$- \frac{27 \sin{\left(\frac{1}{3} \right)}}{82 e^{3}} - \frac{3 \cos{\left(\frac{1}{3} \right)}}{82 e^{3}} + \frac{3}{82}$$
=
=
         -3                        -3
3    27*e  *sin(1/3)   3*cos(1/3)*e  
-- - --------------- - --------------
82          82               82      
$$- \frac{27 \sin{\left(\frac{1}{3} \right)}}{82 e^{3}} - \frac{3 \cos{\left(\frac{1}{3} \right)}}{82 e^{3}} + \frac{3}{82}$$
3/82 - 27*exp(-3)*sin(1/3)/82 - 3*cos(1/3)*exp(-3)/82
Numerical answer [src]
0.0295003456557881
0.0295003456557881

    Use the examples entering the upper and lower limits of integration.