1 / | | 3*x + 2 | ---------- dx | 2 | x - x + 1 | / 0
Integral((3*x + 2)/(x^2 - x + 1), (x, 0, 1))
/ | | 3*x + 2 | 1*---------- dx | 2 | x - x + 1 | /
1*2*x - 1 3*------------ / 7 \ 2 |-----| 3*x + 2 1*x - x + 1 \2*3/4/ ---------- = -------------- + ------------------------- 2 2 2 x - x + 1 / ___ ___\ |-2*\/ 3 \/ 3 | |--------*x + -----| + 1 \ 3 3 /
/ | | 3*x + 2 | 1*---------- dx | 2 = | x - x + 1 | /
/ | | 1 / 14* | ------------------------- dx | | 2 | 1*2*x - 1 | / ___ ___\ 3* | ------------ dx | |-2*\/ 3 \/ 3 | | 2 | |--------*x + -----| + 1 | 1*x - x + 1 | \ 3 3 / | | / / -------------------- + ---------------------------------- 2 3
/ | | 1*2*x - 1 3* | ------------ dx | 2 | 1*x - x + 1 | / -------------------- 2
2 u = x - x
/ | | 1 3* | ----- du | 1 + u | / 3*log(1 + u) ------------- = ------------ 2 2
/ | | 1*2*x - 1 3* | ------------ dx | 2 | 1*x - x + 1 | / 2 \ / 3*log\1 + x - x/ -------------------- = ----------------- 2 2
/ | | 1 14* | ------------------------- dx | 2 | / ___ ___\ | |-2*\/ 3 \/ 3 | | |--------*x + -----| + 1 | \ 3 3 / | / ---------------------------------- 3
___ ___ \/ 3 2*x*\/ 3 v = ----- - --------- 3 3
/ | | 1 14* | ------ dv | 2 | 1 + v | / 14*atan(v) --------------- = ---------- 3 3
/ | | 1 14* | ------------------------- dx | 2 | / ___ ___\ | |-2*\/ 3 \/ 3 | | |--------*x + -----| + 1 / ___ ___\ | \ 3 3 / ___ | \/ 3 2*x*\/ 3 | | 7*\/ 3 *atan|- ----- + ---------| / \ 3 3 / ---------------------------------- = --------------------------------- 3 3
/ ___ ___\ ___ | \/ 3 2*x*\/ 3 | / 2 \ 7*\/ 3 *atan|- ----- + ---------| 3*log\1 + x - x/ \ 3 3 / C + ----------------- + --------------------------------- 2 3
/ ___ \ / ___ |2*\/ 3 *(-1/2 + x)| | / 2 \ 7*\/ 3 *atan|------------------| | 3*x + 2 3*log\1 + x - x/ \ 3 / | ---------- dx = C + ----------------- + -------------------------------- | 2 2 3 | x - x + 1 | /
___ 7*pi*\/ 3 ---------- 9
=
___ 7*pi*\/ 3 ---------- 9
Use the examples entering the upper and lower limits of integration.