Mister Exam

Other calculators

Integral of (3x+2)/(3sqrt^3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  3*x + 2    
 |  -------- dx
 |         3   
 |      ___    
 |  3*\/ x     
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{3 x + 2}{3 \left(\sqrt{x}\right)^{3}}\, dx$$
Integral((3*x + 2)/((3*(sqrt(x))^3)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | 3*x + 2               ___      4   
 | -------- dx = C + 2*\/ x  - -------
 |        3                        ___
 |     ___                     3*\/ x 
 | 3*\/ x                             
 |                                    
/                                     
$$\int \frac{3 x + 2}{3 \left(\sqrt{x}\right)^{3}}\, dx = C + 2 \sqrt{x} - \frac{4}{3 \sqrt{x}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
4976299067.10433
4976299067.10433

    Use the examples entering the upper and lower limits of integration.