Mister Exam

Other calculators

Integral of (3x+4)sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                    
  -                    
  2                    
  /                    
 |                     
 |  (3*x + 4)*sin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{\frac{x}{2}} \left(3 x + 4\right) \sin{\left(x \right)}\, dx$$
Integral((3*x + 4)*sin(x), (x, 0, x/2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of sine is negative cosine:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of sine is negative cosine:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                                                           
 | (3*x + 4)*sin(x) dx = C - 4*cos(x) + 3*sin(x) - 3*x*cos(x)
 |                                                           
/                                                            
$$\int \left(3 x + 4\right) \sin{\left(x \right)}\, dx = C - 3 x \cos{\left(x \right)} + 3 \sin{\left(x \right)} - 4 \cos{\left(x \right)}$$
The answer [src]
                                 /x\
                          3*x*cos|-|
         /x\        /x\          \2/
4 - 4*cos|-| + 3*sin|-| - ----------
         \2/        \2/       2     
$$- \frac{3 x \cos{\left(\frac{x}{2} \right)}}{2} + 3 \sin{\left(\frac{x}{2} \right)} - 4 \cos{\left(\frac{x}{2} \right)} + 4$$
=
=
                                 /x\
                          3*x*cos|-|
         /x\        /x\          \2/
4 - 4*cos|-| + 3*sin|-| - ----------
         \2/        \2/       2     
$$- \frac{3 x \cos{\left(\frac{x}{2} \right)}}{2} + 3 \sin{\left(\frac{x}{2} \right)} - 4 \cos{\left(\frac{x}{2} \right)} + 4$$
4 - 4*cos(x/2) + 3*sin(x/2) - 3*x*cos(x/2)/2

    Use the examples entering the upper and lower limits of integration.