Mister Exam

Integral of tanhx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  tanh(x) dx
 |            
/             
0             
01tanh(x)dx\int\limits_{0}^{1} \tanh{\left(x \right)}\, dx
Integral(tanh(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                     
 |                                      
 | tanh(x) dx = C + x - log(1 + tanh(x))
 |                                      
/                                       
tanh(x)dx=C+xlog(tanh(x)+1)\int \tanh{\left(x \right)}\, dx = C + x - \log{\left(\tanh{\left(x \right)} + 1 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
1 - log(1 + tanh(1))
1log(tanh(1)+1)1 - \log{\left(\tanh{\left(1 \right)} + 1 \right)}
=
=
1 - log(1 + tanh(1))
1log(tanh(1)+1)1 - \log{\left(\tanh{\left(1 \right)} + 1 \right)}
1 - log(1 + tanh(1))
Numerical answer [src]
0.433780830483027
0.433780830483027
The graph
Integral of tanhx dx

    Use the examples entering the upper and lower limits of integration.