Mister Exam

Other calculators


√(3x²-2x+4)

Integral of √(3x²-2x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |     ________________   
 |    /    2              
 |  \/  3*x  - 2*x + 4  dx
 |                        
/                         
0                         
013x22x+4dx\int\limits_{0}^{1} \sqrt{3 x^{2} - 2 x + 4}\, dx
Integral(sqrt(3*x^2 - 2*x + 4), (x, 0, 1))
Detail solution

    SqrtQuadraticRule(a=4, b=-2, c=3, context=sqrt(3*x**2 - 2*x + 4), symbol=x)

  1. Now simplify:

    (3x1)3x22x+46+113asinh(11(3x1)11)18\frac{\left(3 x - 1\right) \sqrt{3 x^{2} - 2 x + 4}}{6} + \frac{11 \sqrt{3} \operatorname{asinh}{\left(\frac{\sqrt{11} \cdot \left(3 x - 1\right)}{11} \right)}}{18}

  2. Add the constant of integration:

    (3x1)3x22x+46+113asinh(11(3x1)11)18+constant\frac{\left(3 x - 1\right) \sqrt{3 x^{2} - 2 x + 4}}{6} + \frac{11 \sqrt{3} \operatorname{asinh}{\left(\frac{\sqrt{11} \cdot \left(3 x - 1\right)}{11} \right)}}{18}+ \mathrm{constant}


The answer is:

(3x1)3x22x+46+113asinh(11(3x1)11)18+constant\frac{\left(3 x - 1\right) \sqrt{3 x^{2} - 2 x + 4}}{6} + \frac{11 \sqrt{3} \operatorname{asinh}{\left(\frac{\sqrt{11} \cdot \left(3 x - 1\right)}{11} \right)}}{18}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                           /    ____           \
 |                                                                   ___      |3*\/ 11 *(-1/3 + x)|
 |    ________________             ________________             11*\/ 3 *asinh|-------------------|
 |   /    2                       /              2  /  1   x\                 \         11        /
 | \/  3*x  - 2*x + 4  dx = C + \/  4 - 2*x + 3*x  *|- - + -| + -----------------------------------
 |                                                  \  6   2/                    18                
/                                                                                                  
11asinh  (6x2211)2332+x3x22x+423x22x+46{{11\,{\rm asinh}\; \left({{6\,x-2}\over{2\,\sqrt{11}}}\right) }\over{2\,3^{{{3}\over{2}}}}}+{{x\,\sqrt{3\,x^2-2\,x+4}}\over{2}}-{{ \sqrt{3\,x^2-2\,x+4}}\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
                          /  ____\                 /    ____\
                 ___      |\/ 11 |        ___      |2*\/ 11 |
      ___   11*\/ 3 *asinh|------|   11*\/ 3 *asinh|--------|
1   \/ 5                  \  11  /                 \   11   /
- + ----- + ---------------------- + ------------------------
3     3               18                        18           
113asinh  (211)+6518+113asinh  (111)+618{{11\,\sqrt{3}\,{\rm asinh}\; \left({{2}\over{\sqrt{11}}}\right)+6 \,\sqrt{5}}\over{18}}+{{11\,\sqrt{3}\,{\rm asinh}\; \left({{1}\over{ \sqrt{11}}}\right)+6}\over{18}}
=
=
                          /  ____\                 /    ____\
                 ___      |\/ 11 |        ___      |2*\/ 11 |
      ___   11*\/ 3 *asinh|------|   11*\/ 3 *asinh|--------|
1   \/ 5                  \  11  /                 \   11   /
- + ----- + ---------------------- + ------------------------
3     3               18                        18           
113asinh(1111)18+13+113asinh(21111)18+53\frac{11 \sqrt{3} \operatorname{asinh}{\left(\frac{\sqrt{11}}{11} \right)}}{18} + \frac{1}{3} + \frac{11 \sqrt{3} \operatorname{asinh}{\left(\frac{2 \sqrt{11}}{11} \right)}}{18} + \frac{\sqrt{5}}{3}
Numerical answer [src]
1.99801282141864
1.99801282141864
The graph
Integral of √(3x²-2x+4) dx

    Use the examples entering the upper and lower limits of integration.