Integral of √(3x²-2x+4) dx
The solution
Detail solution
SqrtQuadraticRule(a=4, b=-2, c=3, context=sqrt(3*x**2 - 2*x + 4), symbol=x)
-
Now simplify:
6(3x−1)3x2−2x+4+18113asinh(1111⋅(3x−1))
-
Add the constant of integration:
6(3x−1)3x2−2x+4+18113asinh(1111⋅(3x−1))+constant
The answer is:
6(3x−1)3x2−2x+4+18113asinh(1111⋅(3x−1))+constant
The answer (Indefinite)
[src]
/ / ____ \
| ___ |3*\/ 11 *(-1/3 + x)|
| ________________ ________________ 11*\/ 3 *asinh|-------------------|
| / 2 / 2 / 1 x\ \ 11 /
| \/ 3*x - 2*x + 4 dx = C + \/ 4 - 2*x + 3*x *|- - + -| + -----------------------------------
| \ 6 2/ 18
/
232311asinh(2116x−2)+2x3x2−2x+4−63x2−2x+4
The graph
/ ____\ / ____\
___ |\/ 11 | ___ |2*\/ 11 |
___ 11*\/ 3 *asinh|------| 11*\/ 3 *asinh|--------|
1 \/ 5 \ 11 / \ 11 /
- + ----- + ---------------------- + ------------------------
3 3 18 18
18113asinh(112)+65+18113asinh(111)+6
=
/ ____\ / ____\
___ |\/ 11 | ___ |2*\/ 11 |
___ 11*\/ 3 *asinh|------| 11*\/ 3 *asinh|--------|
1 \/ 5 \ 11 / \ 11 /
- + ----- + ---------------------- + ------------------------
3 3 18 18
18113asinh(1111)+31+18113asinh(11211)+35
Use the examples entering the upper and lower limits of integration.