Mister Exam

Other calculators


cosx/sqrt(sinx)

Integral of cosx/sqrt(sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    cos(x)     
 |  ---------- dx
 |    ________   
 |  \/ sin(x)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}\, dx$$
Integral(cos(x)/(sqrt(sin(x))), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant is the constant times the variable of integration:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |   cos(x)                ________
 | ---------- dx = C + 2*\/ sin(x) 
 |   ________                      
 | \/ sin(x)                       
 |                                 
/                                  
$$2\,\sqrt{\sin x}$$
The graph
The answer [src]
    ________
2*\/ sin(1) 
$$2\,\sqrt{\sin 1}$$
=
=
    ________
2*\/ sin(1) 
$$2 \sqrt{\sin{\left(1 \right)}}$$
Numerical answer [src]
1.83463455128634
1.83463455128634
The graph
Integral of cosx/sqrt(sinx) dx

    Use the examples entering the upper and lower limits of integration.