Mister Exam

Other calculators


cosx/sqrt(sinx)

Integral of cosx/sqrt(sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    cos(x)     
 |  ---------- dx
 |    ________   
 |  \/ sin(x)    
 |               
/                
0                
01cos(x)sin(x)dx\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}\, dx
Integral(cos(x)/(sqrt(sin(x))), (x, 0, 1))
Detail solution
  1. Let u=sin(x)u = \sqrt{\sin{\left(x \right)}}.

    Then let du=cos(x)dx2sin(x)du = \frac{\cos{\left(x \right)} dx}{2 \sqrt{\sin{\left(x \right)}}} and substitute 2du2 du:

    4du\int 4\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      2du=21du\int 2\, du = 2 \int 1\, du

      1. The integral of a constant is the constant times the variable of integration:

        1du=u\int 1\, du = u

      So, the result is: 2u2 u

    Now substitute uu back in:

    2sin(x)2 \sqrt{\sin{\left(x \right)}}

  2. Add the constant of integration:

    2sin(x)+constant2 \sqrt{\sin{\left(x \right)}}+ \mathrm{constant}


The answer is:

2sin(x)+constant2 \sqrt{\sin{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 |   cos(x)                ________
 | ---------- dx = C + 2*\/ sin(x) 
 |   ________                      
 | \/ sin(x)                       
 |                                 
/                                  
2sinx2\,\sqrt{\sin x}
The graph
0.001.000.100.200.300.400.500.600.700.800.900100
The answer [src]
    ________
2*\/ sin(1) 
2sin12\,\sqrt{\sin 1}
=
=
    ________
2*\/ sin(1) 
2sin(1)2 \sqrt{\sin{\left(1 \right)}}
Numerical answer [src]
1.83463455128634
1.83463455128634
The graph
Integral of cosx/sqrt(sinx) dx

    Use the examples entering the upper and lower limits of integration.