Mister Exam

Integral of 3sqrtxlnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |      ___          
 |  3*\/ x *log(x) dx
 |                   
/                    
0                    
013xlog(x)dx\int\limits_{0}^{1} 3 \sqrt{x} \log{\left(x \right)}\, dx
Integral((3*sqrt(x))*log(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = \sqrt{x}.

      Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 6du6 du:

      6u2log(u2)du\int 6 u^{2} \log{\left(u^{2} \right)}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u2log(u2)du=6u2log(u2)du\int u^{2} \log{\left(u^{2} \right)}\, du = 6 \int u^{2} \log{\left(u^{2} \right)}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=log(u2)u{\left(u \right)} = \log{\left(u^{2} \right)} and let dv(u)=u2\operatorname{dv}{\left(u \right)} = u^{2}.

          Then du(u)=2u\operatorname{du}{\left(u \right)} = \frac{2}{u}.

          To find v(u)v{\left(u \right)}:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          2u23du=2u2du3\int \frac{2 u^{2}}{3}\, du = \frac{2 \int u^{2}\, du}{3}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: 2u39\frac{2 u^{3}}{9}

        So, the result is: 2u3log(u2)4u332 u^{3} \log{\left(u^{2} \right)} - \frac{4 u^{3}}{3}

      Now substitute uu back in:

      2x32log(x)4x3232 x^{\frac{3}{2}} \log{\left(x \right)} - \frac{4 x^{\frac{3}{2}}}{3}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=3x\operatorname{dv}{\left(x \right)} = 3 \sqrt{x}.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3xdx=3xdx\int 3 \sqrt{x}\, dx = 3 \int \sqrt{x}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

        So, the result is: 2x322 x^{\frac{3}{2}}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 \sqrt{x}\, dx = 2 \int \sqrt{x}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

      So, the result is: 4x323\frac{4 x^{\frac{3}{2}}}{3}

  2. Now simplify:

    x32(2log(x)43)x^{\frac{3}{2}} \left(2 \log{\left(x \right)} - \frac{4}{3}\right)

  3. Add the constant of integration:

    x32(2log(x)43)+constantx^{\frac{3}{2}} \left(2 \log{\left(x \right)} - \frac{4}{3}\right)+ \mathrm{constant}


The answer is:

x32(2log(x)43)+constantx^{\frac{3}{2}} \left(2 \log{\left(x \right)} - \frac{4}{3}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                            3/2                
 |     ___                 4*x         3/2       
 | 3*\/ x *log(x) dx = C - ------ + 2*x   *log(x)
 |                           3                   
/                                                
3xlog(x)dx=C+2x32log(x)4x323\int 3 \sqrt{x} \log{\left(x \right)}\, dx = C + 2 x^{\frac{3}{2}} \log{\left(x \right)} - \frac{4 x^{\frac{3}{2}}}{3}
The answer [src]
-4/3
43- \frac{4}{3}
=
=
-4/3
43- \frac{4}{3}
-4/3
Numerical answer [src]
-1.33333333333333
-1.33333333333333

    Use the examples entering the upper and lower limits of integration.