Mister Exam

Integral of 2xln(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  2*x*log(x) dx
 |               
/                
0                
012xlog(x)dx\int\limits_{0}^{1} 2 x \log{\left(x \right)}\, dx
Integral((2*x)*log(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute 2du2 du:

      2ue2udu\int 2 u e^{2 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        ue2udu=2ue2udu\int u e^{2 u}\, du = 2 \int u e^{2 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=2uu = 2 u.

            Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

            eu2du\int \frac{e^{u}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2u2\frac{e^{2 u}}{2}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

          1. Let u=2uu = 2 u.

            Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

            eu2du\int \frac{e^{u}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2u2\frac{e^{2 u}}{2}

          So, the result is: e2u4\frac{e^{2 u}}{4}

        So, the result is: ue2ue2u2u e^{2 u} - \frac{e^{2 u}}{2}

      Now substitute uu back in:

      x2log(x)x22x^{2} \log{\left(x \right)} - \frac{x^{2}}{2}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=2x\operatorname{dv}{\left(x \right)} = 2 x.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x2x^{2}

      Now evaluate the sub-integral.

    2. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

  2. Now simplify:

    x2(log(x)12)x^{2} \left(\log{\left(x \right)} - \frac{1}{2}\right)

  3. Add the constant of integration:

    x2(log(x)12)+constantx^{2} \left(\log{\left(x \right)} - \frac{1}{2}\right)+ \mathrm{constant}


The answer is:

x2(log(x)12)+constantx^{2} \left(\log{\left(x \right)} - \frac{1}{2}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                     2            
 |                     x     2       
 | 2*x*log(x) dx = C - -- + x *log(x)
 |                     2             
/                                    
2xlog(x)dx=C+x2log(x)x22\int 2 x \log{\left(x \right)}\, dx = C + x^{2} \log{\left(x \right)} - \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
-1/2
12- \frac{1}{2}
=
=
-1/2
12- \frac{1}{2}
-1/2
Numerical answer [src]
-0.5
-0.5
The graph
Integral of 2xln(x) dx

    Use the examples entering the upper and lower limits of integration.