1 / | | / 2 \ | \x - 2*x/*log(x) dx | / 0
Integral((x^2 - 2*x)*log(x), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Use integration by parts:
Let and let .
Then .
To find :
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now evaluate the sub-integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 2 3 3 | / 2 \ x x 2 x *log(x) | \x - 2*x/*log(x) dx = C + -- - -- - x *log(x) + --------- | 2 9 3 /
Use the examples entering the upper and lower limits of integration.