Mister Exam

Other calculators

Integral of 2x^3-3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3              
  /              
 |               
 |  /   3    \   
 |  \2*x  - 3/ dx
 |               
/                
1                
13(2x33)dx\int\limits_{1}^{3} \left(2 x^{3} - 3\right)\, dx
Integral(2*x^3 - 3, (x, 1, 3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2x3dx=2x3dx\int 2 x^{3}\, dx = 2 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: x42\frac{x^{4}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (3)dx=3x\int \left(-3\right)\, dx = - 3 x

    The result is: x423x\frac{x^{4}}{2} - 3 x

  2. Now simplify:

    x(x36)2\frac{x \left(x^{3} - 6\right)}{2}

  3. Add the constant of integration:

    x(x36)2+constant\frac{x \left(x^{3} - 6\right)}{2}+ \mathrm{constant}


The answer is:

x(x36)2+constant\frac{x \left(x^{3} - 6\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                      4      
 | /   3    \          x       
 | \2*x  - 3/ dx = C + -- - 3*x
 |                     2       
/                              
(2x33)dx=C+x423x\int \left(2 x^{3} - 3\right)\, dx = C + \frac{x^{4}}{2} - 3 x
The graph
1.03.01.21.41.61.82.02.22.42.62.8-50100
The answer [src]
34
3434
=
=
34
3434
34
Numerical answer [src]
34.0
34.0

    Use the examples entering the upper and lower limits of integration.