Mister Exam

Other calculators

Integral of (2x-3)sinxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 157                   
 ---                   
  50                   
  /                    
 |                     
 |  (2*x - 3)*sin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{\frac{157}{50}} \left(2 x - 3\right) \sin{\left(x \right)}\, dx$$
Integral((2*x - 3)*sin(x), (x, 0, 157/50))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of sine is negative cosine:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of sine is negative cosine:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                                                           
 | (2*x - 3)*sin(x) dx = C + 2*sin(x) + 3*cos(x) - 2*x*cos(x)
 |                                                           
/                                                            
$$\int \left(2 x - 3\right) \sin{\left(x \right)}\, dx = C - 2 x \cos{\left(x \right)} + 2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}$$
The graph
The answer [src]
                        /157\
                  82*cos|---|
          /157\         \ 50/
-3 + 2*sin|---| - -----------
          \ 50/        25    
$$-3 + 2 \sin{\left(\frac{157}{50} \right)} - \frac{82 \cos{\left(\frac{157}{50} \right)}}{25}$$
=
=
                        /157\
                  82*cos|---|
          /157\         \ 50/
-3 + 2*sin|---| - -----------
          \ 50/        25    
$$-3 + 2 \sin{\left(\frac{157}{50} \right)} - \frac{82 \cos{\left(\frac{157}{50} \right)}}{25}$$
-3 + 2*sin(157/50) - 82*cos(157/50)/25
Numerical answer [src]
0.283181145899304
0.283181145899304

    Use the examples entering the upper and lower limits of integration.