Mister Exam

Other calculators

Integral of 2x/x*sqrt((2x+1)/2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                       
  /                       
 |                        
 |          ___________   
 |  2*x    / 2*x + 1      
 |  ---*  /  -------*x  dx
 |   x  \/      2         
 |                        
/                         
1                         
$$\int\limits_{1}^{2} \frac{2 x}{x} \sqrt{x \frac{2 x + 1}{2}}\, dx$$
Integral(((2*x)/x)*sqrt(((2*x + 1)/2)*x), (x, 1, 2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Don't know the steps in finding this integral.

          But the integral is

        So, the result is:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     /                
 |                                     |                 
 |         ___________                 |    __________   
 | 2*x    / 2*x + 1               ___  |   /        2    
 | ---*  /  -------*x  dx = C + \/ 2 * | \/  x + 2*x   dx
 |  x  \/      2                       |                 
 |                                    /                  
/                                                        
$$\int \frac{2 x}{x} \sqrt{x \frac{2 x + 1}{2}}\, dx = C + \sqrt{2} \int \sqrt{2 x^{2} + x}\, dx$$
The answer [src]
      ___        /  ___\        /  ___\       ___
  5*\/ 6    acosh\\/ 5 /   acosh\\/ 3 /   9*\/ 5 
- ------- - ------------ + ------------ + -------
     8           8              8            4   
$$- \frac{5 \sqrt{6}}{8} - \frac{\operatorname{acosh}{\left(\sqrt{5} \right)}}{8} + \frac{\operatorname{acosh}{\left(\sqrt{3} \right)}}{8} + \frac{9 \sqrt{5}}{4}$$
=
=
      ___        /  ___\        /  ___\       ___
  5*\/ 6    acosh\\/ 5 /   acosh\\/ 3 /   9*\/ 5 
- ------- - ------------ + ------------ + -------
     8           8              8            4   
$$- \frac{5 \sqrt{6}}{8} - \frac{\operatorname{acosh}{\left(\sqrt{5} \right)}}{8} + \frac{\operatorname{acosh}{\left(\sqrt{3} \right)}}{8} + \frac{9 \sqrt{5}}{4}$$
-5*sqrt(6)/8 - acosh(sqrt(5))/8 + acosh(sqrt(3))/8 + 9*sqrt(5)/4
Numerical answer [src]
3.46304440508526
3.46304440508526

    Use the examples entering the upper and lower limits of integration.