Integral of 2x/x*sqrt((2x+1)/2x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
x2xx22x+1=22x2+x
-
The integral of a constant times a function is the constant times the integral of the function:
∫22x2+xdx=2∫2x2+xdx
-
Don't know the steps in finding this integral.
But the integral is
∫2x2+xdx
So, the result is: 2∫2x2+xdx
Method #2
-
Rewrite the integrand:
x2xx22x+1=2x2+2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫2x2+2xdx=2∫x2+2xdx
-
Rewrite the integrand:
-
The integral of a constant times a function is the constant times the integral of the function:
∫222x2+xdx=22∫2x2+xdx
-
Don't know the steps in finding this integral.
But the integral is
∫2x2+xdx
So, the result is: 22∫2x2+xdx
So, the result is: 2∫2x2+xdx
-
Now simplify:
2∫x(2x+1)dx
-
Add the constant of integration:
2∫x(2x+1)dx+constant
The answer is:
2∫x(2x+1)dx+constant
The answer (Indefinite)
[src]
/ /
| |
| ___________ | __________
| 2*x / 2*x + 1 ___ | / 2
| ---* / -------*x dx = C + \/ 2 * | \/ x + 2*x dx
| x \/ 2 |
| /
/
∫x2xx22x+1dx=C+2∫2x2+xdx
___ / ___\ / ___\ ___
5*\/ 6 acosh\\/ 5 / acosh\\/ 3 / 9*\/ 5
- ------- - ------------ + ------------ + -------
8 8 8 4
−856−8acosh(5)+8acosh(3)+495
=
___ / ___\ / ___\ ___
5*\/ 6 acosh\\/ 5 / acosh\\/ 3 / 9*\/ 5
- ------- - ------------ + ------------ + -------
8 8 8 4
−856−8acosh(5)+8acosh(3)+495
-5*sqrt(6)/8 - acosh(sqrt(5))/8 + acosh(sqrt(3))/8 + 9*sqrt(5)/4
Use the examples entering the upper and lower limits of integration.