Mister Exam

Integral of 2x²-2x-7 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                    
  /                    
 |                     
 |  /   2          \   
 |  \2*x  - 2*x - 7/ dx
 |                     
/                      
1                      
$$\int\limits_{1}^{0} \left(\left(2 x^{2} - 2 x\right) - 7\right)\, dx$$
Integral(2*x^2 - 2*x - 7, (x, 1, 0))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                         3
 | /   2          \           2         2*x 
 | \2*x  - 2*x - 7/ dx = C - x  - 7*x + ----
 |                                       3  
/                                           
$$\int \left(\left(2 x^{2} - 2 x\right) - 7\right)\, dx = C + \frac{2 x^{3}}{3} - x^{2} - 7 x$$
The graph
The answer [src]
22/3
$$\frac{22}{3}$$
=
=
22/3
$$\frac{22}{3}$$
22/3
Numerical answer [src]
7.33333333333333
7.33333333333333

    Use the examples entering the upper and lower limits of integration.