Mister Exam

Integral of 2ctgx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi            
 --            
 2             
  /            
 |             
 |  2*cot(x) dx
 |             
/              
pi             
--             
4              
$$\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \cot{\left(x \right)}\, dx$$
Integral(2*cot(x), (x, pi/4, pi/2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 | 2*cot(x) dx = C + 2*log(sin(x))
 |                                
/                                 
$$\int 2 \cot{\left(x \right)}\, dx = C + 2 \log{\left(\sin{\left(x \right)} \right)}$$
The graph
The answer [src]
      /  ___\
      |\/ 2 |
-2*log|-----|
      \  2  /
$$- 2 \log{\left(\frac{\sqrt{2}}{2} \right)}$$
=
=
      /  ___\
      |\/ 2 |
-2*log|-----|
      \  2  /
$$- 2 \log{\left(\frac{\sqrt{2}}{2} \right)}$$
-2*log(sqrt(2)/2)
Numerical answer [src]
0.693147180559945
0.693147180559945

    Use the examples entering the upper and lower limits of integration.